
A Case Study in Firmware Verification:
Applying Formal Methods to Intel® TDX Module

(Appendix)

Dirk Beyer1 , Po-Chun Chien1 , Bo-Yuan Huang2 ,

Nian-Ze Lee3,1 , and Thomas Lemberger1

1 LMU Munich, Munich, Germany
2 Intel INT31, USA

3 National Taiwan University, Taipei, Taiwan

A An Example Proof Harness
1 // proof harness components
2 void hmkc_setup () {
3 fv_setup_module_state ();
4 fv_setup_tdr ();
5 fv_setup_tdcs ();
6 }
7 void hmkc_teardown () {
8 fv_teardown_tdcs ();
9 fv_teardown_tdr ();

10 fv_teardown_module_state ();
11 }
12 void
13 hmkc_invalid_input_rcx_precond () {
14 ASSUME(
15 !is_valid_hmkc_input_rcx () &&
16 is_valid_hmkc_state_metadata () &&
17 is_valid_hmkc_state_lifecycle ());
18 }
19 void
20 hmkc_invalid_input_rcx_postcond () {
21 ASSERT(
22 get_local_data ()->vmm_regs.rax ==
23 api_error_with_operand_id(
24 TDX_OPERAND_INVALID ,OPERAND_ID_RCX));
25 }
26 // auto -generated task entry
27 void main() {
28 hmkc_setup ();
29 hmkc_invalid_input_rcx_precond ();
30 hmkc_function_call ();
31 hmkc_invalid_input_rcx_postcond ();
32 hmkc_teardown ();
33 }

Fig. 1: Example proof harness

Figure 1 shows an example proof har-
ness for a host-side interface function
TDH.MNG.KEY.CONFIG. Setup and tear-
down procedures are shown at line 2
and line 7, respectively. They highlight
that only the state tdr is explicitly al-
located and deallocated, as specified in
the excerpted specification [1, Table 1],
in addition to the commonly required
states module_state and tdcs.

This harness demonstrates a pre-
and postcondition pair for the func-
tional property of correct error han-
dling in the negative space. Specifi-
cally, it examines the interface function
TDH.MNG.KEY.CONFIG when the input
argument passed via the register RCX is
invalid. The precondition at line 13 as-
sumes that the register RCX contains an
invalid value, while all other state vari-
ables conform to expected constraints.
The postcondition at line 20 asserts
that the completion status code stored
in the register RAX is TDX_INVALID_-
OPERAND, correctly signaling the captured negative-space error condition, as
required by the specification [1, Table 1].

The main function at line 27 is automatically generated by HarnessForge and
will be used as the entry point of the created verification task. HarnessForge will

This document is an appendix to the TACAS 2026 paper [1].

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0001-7069-4069
https://orcid.org/0000-0002-8096-5595
https://orcid.org/0000-0003-0291-815X

2 D. Beyer, P.-C. Chien, B.-Y. Huang, N.-Z. Lee, and T. Lemberger

automatically collect the required definitions of data structures and subroutines
from the production TDX code base, override relied-upon assembly instructions
with their shadow C implementations or overapproximation, slice off syntactically
unreachable code, and finally produce a self-contained C file ready for off-the-
shelf software verifiers.

B Identified Verifier Issues
Table 1 summarizes the issues we identified in the evaluated verifiers and includes
the links to the corresponding issue trackers.

Table 1: Summary of identified issues in the evaluated verifiers
Verifier Issue description

Cbmc Incorrect handling of packed in struct members (#8443)

CPA.

Anonymous struct/union in designated initializers not supported (#1239)
Lack support for cast-to-union extension (#1289)
Lack support for compiler attributes such as packed and aligned (#818)

Esbmc
Error during encoding of verification conditions (#2850, #2851)
Error during program unrolling (#2852)

UAut.
Anonymous struct/union not supported by C-to-Boogie translator (#272)
Lack padding model for unpacked data structures (#417)

C Examples Showing Firmware’s Unique Characteristics
C.1 Type Punning Using union

Figure 2 demonstrates the use of union for type punning in TDX Module. This
type defines various interpretations of the register RAX, which all interface functions
use to store completion status. It can be interpreted as a 64-bit unsigned integer
for general status codes (e.g., TDX_SUCCESS and TDX_OPERAND_BUSY) or differently
depending on the function. For instance, functions triggering TD exits use the
lower 32 bits to encode detailed exit reasons, while the upper 32 bits encode
seven distinct fields of varying bit widths.

C.2 Memory Layout with __packed__

Figure 3 shows how the type definition of the TD attestation measurement
report uses the attribute __packed__. Without such an attribute, for many
compiler frontends, the 239-byte field tee_tcb_info and the following 17-byte
reserved field would have paddings added for easy alignment. Note that there
is an accompanying compile-time check, using GNU C’s macro _Static_assert,
to further ensure that the overall size of the TD measurement report is exactly
1024 bytes. (_Static_asserts are omitted in our verification tasks since it is a
compile-time check, not a runtime assertion that a verifier typically handles.)

https://github.com/diffblue/cbmc/issues/8443
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1239
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/1289
https://gitlab.com/sosy-lab/software/cpachecker/-/issues/818
https://github.com/esbmc/esbmc/issues/2850
https://github.com/esbmc/esbmc/issues/2851
https://github.com/esbmc/esbmc/issues/2852
https://github.com/ultimate-pa/ultimate/issues/272
https://github.com/ultimate-pa/ultimate/issues/417

A Case Study in Firmware Verification: Applying Formal Methods to Intel ... 3

1 typedef union api_error_code_u {
2 struct {
3 union {
4 uint32_t operand;
5 uint32_t details_l2;
6 struct {
7 uint16_t details_l2_low;
8 uint16_t details_l2_high;
9 };

10 };
11 uint32_t details_l1 : 8,
12 clas : 8,
13 reserved : 12,
14 host_recoverability_hint : 1,
15 fatal : 1,
16 non_recoverable : 1,
17 error : 1;
18 };
19 uint64_t raw;
20 } api_error_code_t;

Fig. 2: The type definition of the interface-function completion-status code that
uses nested union for type punning

1 typedef struct __attribute__ ((__packed__))
2 td_report_s {
3 report_mac_struct_t report_mac_struct;
4 tee_tcb_info_t tee_tcb_info;
5 uint8_t reserved [17];
6 td_info_t td_info;
7 } td_report_t;
8 _Static_assert(sizeof(td_report_t) == 1024, td_report_t);

Fig. 3: The type definition of the TD measurement report that uses compiler
attributes for precise memory-layout control

4 D. Beyer, P.-C. Chien, B.-Y. Huang, N.-Z. Lee, and T. Lemberger

C.3 Reimplementation of memcpy Using Inline Assembly

Figure 4 presents tdx_memcpy, a reimplementation of the standard function void
memcpy(void *dest, void *src, size_t nbytes). tdx_memcpy introduces an
additional parameter, dst_bytes, used for a sanity check.

1 _STATIC_INLINE_ void tdx_memcpy(
2 void * dst , uint64_t dst_bytes ,
3 void * src , uint64_t nbytes
4) {
5 volatile uint64_t junk_a , junk_b;
6 tdx_sanity_check (dst_bytes >= nbytes ,

↪→ SCEC_HELPERS_SOURCE , 1);
7 _ASM_VOLATILE_ (
8 "rep; movsb;"
9 :"=S"(junk_a), "=D"(junk_b)

10 :"c"(nbytes), "S"(src), "D"(dst)
11 :"memory"
12);
13 }

Fig. 4: TDX Module’s internal implementation of the function memcpy, named
tdx_memcpy, using inline assembly

References
1. Beyer, D., Chien, P.C., Huang, B.Y., Lee, N.Z., Lemberger, T.: A case study in

firmware verification: Applying formal methods to Intel® TDX Module. In: Proc.
TACAS. LNCS, Springer (2026)

	A Case Study in Firmware Verification: Applying Formal Methods to Intel0.7® TDX Module

