
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

.

Proc. CAV 2016, c© Springer

Verification-Aided Debugging:
An Interactive Web-Service for

Exploring Error Witnesses

Dirk Beyer and Matthias Dangl

University of Passau, Germany

Abstract. Traditionally, a verification task is considered solved as soon
as a property violation or a correctness proof is found. In practice, this
is where the actual work starts: Is it just a false alarm? Is the error
reproducible? Can the error report later be re-used for bug fixing or re-
gression testing? The advent of exchangeable witnesses is a paradigm shift
in verification, from simple answers true and false towards qualitatively
more valuable information about the reason for the property violation.
This paper explains a convenient web-based toolchain that can be used
to answer the above questions. We consider as example application the
verification of C programs. Our first component collects witnesses and
stores them for later re-use; for example, if the bug is fixed, the witness
can be tried once again and should now be rejected, or, if the bug was
not scheduled for fixing, the database can later provide the witnesses in
case an engineer wants to start fixing the bug. Our second component
is a web service that takes as input a witness for the property violation
and (re-)validates it, i.e., it re-plays the witness on the system in order
to re-explore the state-space in question. The third component is a web
service that continues from the second step by offering an interactive
visualization that interconnects the error path, the system’s sources, the
values on the path (test vectors), and the reachability graph. We evaluated
the feasibility of our approach on a large benchmark of verification tasks.

1 Introduction

The answer of a verification tool to a given verification task (consisting of a
specification and a system) is either that the system satisfies the specification or
that the system violates the specification (or the answer ‘unknown’ is returned) [9].
If a violation of the specification is detected, an error path through the system
is reported that exhibits the problem, such that the user can understand the
problem and fix the bug: counterexamples to verification have been described as
invaluable to debugging complex systems and have been a common feature of
model checkers for several decades [7]. In particular, the successful technique of
counterexample-guided abstraction refinement (CEGAR) [8] is based on analyzing
error paths through the system.

In the past few years, there was a strong focus in the community on using
common exchange formats and reproducing errors described by previously com-
puted counterexamples. Esbmc was extended to reproduce errors via instantiated



code [11], and CPAchecker was used to re-check previously computed error
paths by interpreting them as automata that control the state-space search [6].
While these internal approaches to witness validation can reduce the amount of
false alarms reported by a tool, they establish no additional trust in a report
produced and validated by an untrusted verifier. The advantages of considering
error witnesses as a valuable verification artifact were explained and supported
by two completely different implementations of witness validators [4], namely
CPAchecker and Automizer. Also, competitions in the community required
exchangeable witnesses: the competition on termination uses a certification-
problem format (CPF) 1 and the competition on software verification uses a
machine-readable, exchangeable format for error witnesses 2. Our toolchain is
based on the common exchange format that was used in SV-COMP [2, 4], which
allows specifying counterexample traces using control-flow paths and data values.
Previous efforts towards helping users understand the counterexamples have
lead to interactive trace visualizations [1, 5, 10], but the user was locked-in to
a certain toolchain. The introduction of machine-readable error witnesses has
opened up new possibilities for collecting, accumulating, and validating coun-
terexample traces from different verifiers [4]. A wide range of software verifiers
already supports a common exchange format, as shown by the competition on
software verification 3, which has adopted error-witness validation already two
years ago.

Error witnesses support traditional debugging very well: the test values that
a witness might contain can direct a classic debugger through the system to
the problematic part of the implementation or model. But the exchangeable
witnesses support even a more abstract form of debugging, based on a graphical
visualization of error paths and reachability graphs.

Figure 1 gives an overview over the components involved in our toolchain.
There are three subsystems that the user interacts with: (1) We developed a
witness store for persistently keeping error witnesses that different verification
tools have produced. The database enables the user to select and retrieve specific
witnesses for a given set of verification tasks. One possible use case is to fetch all
witnesses that document a bug in a specific C program, to help the developer
better understand the issue. (2) We offer an online witness validator with a
convenient web-service API that enables validation without the need to install
software. A bug report that a verifier returns can potentially be a false alarm, so
it is convenient for the user to first automatically cross-examine the report, before
manual effort is invested (and perhaps wasted). To validate an error witness,
the user can send the validation task, which consists of the source-code file,
the property, and a corresponding error witness (potentially obtained from the
witness database), to the validation service. The service then validates the error
witness. If the witness is rejected, the user is advised to prioritize other tasks,

1 http://cl-informatik.uibk.ac.at/software/cpf
2 http://sv-comp.sosy-lab.org/2016/witnesses/
3 For example, see the list of systems in SV-COMP 2016:
http://sv-comp.sosy-lab.org/2016/systems.php.

http://cl-informatik.uibk.ac.at/software/cpf
http://sv-comp.sosy-lab.org/2016/witnesses/
http://sv-comp.sosy-lab.org/2016/systems.php


System

Code

Spec

Witness Store

Witness 1

Witness 2

Verification Service

Validation Service

N9
23

26 void __VERIFIER_error();

27 void __VERIFIER_assume(int);

28 unsigned int __VERIFIER_nondet_uint();

29 void __VERIFIER_assert(int cond);

30 int main();

31 Function start dummy edge

10 unsigned int x = 1;

11 unsigned int y;

12 y = __VERIFIER_nondet_uint();

INIT GLOBAL VARS

N13
13

N14
12

[y > 0]

N32
0

[!(y > 0)]

N15
11

while

Interactive
Visualized
Report

User

view and
understand

develop and fix view and maintain

Fig. 1: System overview, blue parts are discussed in this paper

because the specific error path that the witness describes has been declared as
infeasible. If, instead, the witness is validated, the validation service feeds all
information gained about the bug into the third component, the interactive report.
(3) Successful witness validations produce a detailed and interactive web-based
bug report. The report contains a debugger-like feature for stepping through the
error path, while providing several context-sensitive representations of the buggy
program. The report also encompasses all information required to reproduce the
validation externally.

Application Example. Our application example is the verification of system
programs written in the language C. While the concepts of our toolchain can be
applied to other programming languages, we restrict our tools to C. The web
service that we describe is available on the internet, and our primary target is to
support open-source projects. Organizations that develop proprietary software
can still benefit from our system, because it is easily installed on a local web
server that is restricted to the organization’s intranet.



Data to Experiment. As part of our evaluation, we ran several verification tools
that participated in the competition on software verification (because those tools
are known to generate useful witnesses) and fed the witnesses into our database.
For the reader to assess our toolchain, we have compiled an archive with witnesses,
validation results and error-path visualizations for offline use. The archive is
available as supplement, and the validation results and visualization results can
be reproduced via our live web service or offline using the CPAchecker-based
witness validator 4 The archive contains reports for a total of 1 382 witnesses for
26 verification tasks that contain a bug. The average number of witnesses that
we collected is 53 witnesses per verification task, the program with the fewest
has 4, the program with the most has 114 witnesses in our database.

2 Collection of Error-Paths in a Witness Store

We consider witnesses as a prime-value verification artifact, because they can
make it (a) efficient to re-run a partial verification to explore the bug again and
(b) easy to use different verification tools for validation.

Permanently storing witnesses opens many new practical applications to let
verification technology have a larger impact on system development. Our witness
store provides a means to take advantage of the various beneficial properties of
machine-readable witnesses in a common exchange format:

– Witness Validation: Imprecise verifiers may sometimes produce false alarms
and thus waste valuable developer time. With witness validation, users no
longer need to trust the answer False. Instead, they can concentrate on
paying attention to witnesses that are confirmed by an automatic witness
validator. Each validation run that confirms a witness can increase the user’s
confidence in the bug report.

– Witness Inspection: Witness validators with complementing strategies can
be applied to a witness, each leveraging its strengths to add diagnostic
information that the others may be incapable to derive. Therefore, witness
validation can be understood as a chain of ever refining details for identifying,
understanding, and fixing the bug.

– Bug Reports: In bug reports, attached witnesses can be used to provide a
precise description of the erroneous behavior, including test-vector values.

– Re-Verification: Working with error witnesses is cheap in terms of resources,
because the verification result can often be re-established with reduced effort.
This is not only beneficial for validating a given witness, but also when
checking for regressions: If the witness is still valid for a changed version of
the system, the bug has been reintroduced or was not yet fixed [6].

4 The URL to our supplementary web page, which includes the live web ser-
vice, the archive for offline use, and a virtual machine set up for vali-
dating the witnesses and reproducing the results using CPAchecker 1.6, is:
https://www.sosy-lab.org/∼dbeyer/witness-based-debugging/.

https://www.sosy-lab.org/~dbeyer/witness-based-debugging/


3 Convenient Witness Validation
A witness validator is a verifier that analyzes the synchronized product of the
system with the witness automaton, where transitions are synchronized using
system operations and transition annotations. This means that the witness
automaton observes the system paths that the verifier wants to explore: if the
operation on the system path does not match the transition of the witness
automaton, then the verifier is forbidden to explore that path further; if the
operation on the path matches, then the witness automaton and the system
proceed to the next state, possibly restricting the system’s state such that
the assumptions given in the data annotation are satisfied. Implementations of
witness validators are available, see for example CPAchecker and Automizer [4].
Our validation service uses the CPAchecker witness validator as back-end.
CPAchecker supports and combines many different verification strategies, for
example value analysis, predicate abstraction, CEGAR, bounded model checking,
k-induction, and concrete memory graphs. The specific configuration that is
effectively used to validate the witnesses via our web service is bit-accurate and
combines value analysis and predicate abstraction. Our web service does not yet
support arrays, concurrency, and termination analysis.

Conceptually, an error-witness automaton is a protocol automaton, and an
error-witness analysis is a protocol analysis for an error-witness automaton [4],
which runs as a component of a composite program analysis. Unlike observer
automata [3], which can be used to represent the specification the analyzed
program is verified with, error-witness automata not only observe the state-space
exploration of the program analysis, but also restrict it to those successor states
that lead the exploration toward a specification violation, whereas an observer
automaton follows all abstract successor states. Therefore, the program analysis
is guided by the error-witness automaton to explore the state space that violates
the specification.

The process of determining if it is possible to independently re-establish
a verification result, given the program, specification, result, and witness, is
called witness validation. One way of implementing error-witness validation is by
constructing a composite program analysis that has both a witness analysis and
a specification analysis as components, which simultaneously restrict and observe
the state-space exploration: the specification analysis checks if an analyzed path
actually violates the specification, and the search of the composite program
analysis is restricted by the witness validation such that only paths that the
error-witness automaton can match are explored. For example, the analysis stops
exploring a path, if, during the analysis of that path, the witness automaton
takes a transition to a sink state. An error witness is confirmed by the witness
validator if both, the witness automaton and the specification automaton, take a
transition to their respective (accepting) error state [4].

4 Visualizing and Interactively Exploring Error-Paths
Figure 2 shows a screenshot of an interactive counterexample report. The screen
is divided into two columns: The left column provides detailed information that
is specific to the error path, namely the source code on the path to the property



Fig. 2: Typical view of the error-path visualizer: program source code with violating
test vector (left, green) and CFA with violating path (right, red); left view top shows
the menu for debugger-like step-through, right view top shows the display options: CFA,
ARG, Source, Log, Statistics, Configurations

violation, and, like in a debugger, the program locations are decorated with test
values that were computed by the witness validator. The right column embeds
the specific information from the left column into the general context of the
system and the analysis. It contains control-flow automata (CFA) for each of the
functions, the abstract reachability graph (ARG) of the verification, full source
code of the verification task, the verification log, statistics, and configuration
parameters of the validation run. In all CFA and the ARG, the states on the path
to the property violation are marked in red. Double clicking on a control-flow
state that precedes a function call displays the CFA of the called function. Both
columns, however, are not only useful in isolation: clicking on a line of code
in the left column while viewing the ARG or CFA will navigate to the state
corresponding to the clicked line of source code.

The visualization is built upon the JavaScript framework AngluarJS and
the jQuery and Bootstrap web-development libraries. The layout of the graphs
is computed using GraphViz and exchanged in SVG format. The complete data
for one such error-path visualization takes on average 120 kB of memory.



5 Conclusion

Over the past decades, the algorithmic abilities of verification tools were consid-
erably increased, but in practice, verification technology is still not as popular as
testing. Why? Because because it is inconvenient to use. Our work contributes
to closing this gap, by considering not only the true/false answers as value,
but actively using other results of the verification process, most prominently
the error witnesses. We have presented a toolchain that supports engineers in
understanding the error reports of verification systems. First, we archive verifica-
tion witnesses permanently in a database. Second, we provide a convenient web
service for witness validation, i.e., a verification task together with a witness can
be given as input, and the results are presented via the web API (for manual
inspection or automatic retrieval). Third, we explain an error-path visualization
that supports an interactive investigation of the source code, the control-flow
graph, the reachability graph, and test values. We believe that the proposed
method is a step towards a more convenient usage of verification results.

References

1. H. Aljazzar and S. Leue. Debugging of dependability models using interactive
visualization of counterexamples. In Proc. QEST’08, pages 189–198. IEEE, 2008.

2. D. Beyer. Reliable and reproducible competition results with BenchExec and
witnesses. In Proc. TACAS, LNCS 9636, pages 887–904. Springer, 2016.

3. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The Blast
query language for software verification. In Proc. SAS, LNCS 3148, pages 2–18.
Springer, 2004.

4. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proc. FSE, pages
721–733. ACM, 2015.

5. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

6. D. Beyer and P. Wendler. Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In Proc. SPIN, LNCS 7976, pages 1–17.
Springer, 2013.

7. E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: Algorithmic verification
and debugging. Commun. ACM, 52(11):74–84, 2009.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT, 1999.
10. A. Groce, D. Kröning, and F. Lerda. Understanding counterexamples with explain.

In Proc. CAV’04, pages 453–456. Springer, 2004.
11. H. Rocha, R. S. Barreto, L. Cordeiro, and A. D. Neto. Understanding programming

bugs in ANSI-C software using bounded model checking counter-examples. In Proc.
IFM, LNCS 7321, pages 128–142. Springer, 2012.

http://dx.doi.org/10.1109/QEST.2008.40
http://dx.doi.org/10.1109/QEST.2008.40
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-540-27864-1_2
http://dx.doi.org/10.1007/978-3-540-27864-1_2
http://dx.doi.org/10.1007/978-3-540-27864-1_2
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1145/1592761.1592781
http://dx.doi.org/10.1145/1592761.1592781
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-540-27813-9_35
http://dx.doi.org/10.1007/978-3-540-27813-9_35
http://dx.doi.org/10.1007/978-3-642-30729-4_10
http://dx.doi.org/10.1007/978-3-642-30729-4_10
http://dx.doi.org/10.1007/978-3-642-30729-4_10

