
SMT-based Software Model Checking:
An Experimental Comparison of

Four Algorithms

Dirk Beyer and Matthias Dangl

University of Passau, Germany

Abstract. After many years of successful development of new algorithms
for software model checking, there is a need to consolidate the knowl-
edge about the different algorithms and approaches. This paper gives a
coarse overview in terms of effectiveness and efficiency of four algorithms.
We compare the following different “schools of thought” of algorithms:
bounded model checking, k-induction, predicate abstraction, and lazy
abstraction with interpolants. Those algorithms are well-known and suc-
cessful in software verification. They have in common that they are based
on SMT solving as the back-end technology, using the theories of unin-
terpreted functions, bit vectors, and floats as underlying theory. All four
algorithms are implemented in the verification framework CPAchecker.
Thus, we can present an evaluation that really compares only the core
algorithms, and keeps the design variables such as parser front end, SMT
solver, used theory in SMT formulas, etc. constant. We evaluate the
algorithms on a large set of verification tasks, and discuss the conclusions.

Keywords: Software Verification, Program Analysis, Bounded Model Checking,
k-induction, Impact, Lazy Abstraction, SMT Solving

1 Introduction

In recent years, advances in automatic methods for software verification have
lead to increased efforts towards applying software verification to industrial
systems, in particular operating-systems code [3, 5, 13, 30]. Predicate abstrac-
tion [24] with counterexample-guided abstraction refinement (CEGAR) [18] and
lazy abstraction [27], lazy abstraction with interpolants [33], and k-induction with
auxiliary-invariants [8, 22] are some of the concepts introduced to scale verification
technology from simple toy problems to real-world software. In the 5th Interna-
tional Competition of Software Verification (SV-COMP’16) [7], ten out of the 13
candidates participating in category Overall used some of these techniques, and
out of the remaining three, two are bounded model checkers [15]. Considering this
apparent success, we revisit an earlier work that presented a unifying algorithm
for lazy predicate abstraction (Blast-like) and lazy abstraction with interpolants
(Impact-like), and showed that both techniques perform similarly [14]. We conduct
a comparative evaluation of bounded model checking, k-induction, lazy predicate

abstraction, and lazy abstraction with interpolants, observe that the previously
drawn conclusions about the two lazy-abstraction techniques still hold today, and
show that k-induction has the potential to outperform the other two techniques.
We restrict our presentation to safety properties; however, the techniques that
we present can be used also for checking liveness [38].

Availability of Data and Tools. All presented approaches are implemented
in the open-source verification framework CPAchecker [10], which is available
under the Apache 2.0 license. All experiments are based on publicly available
benchmark verification tasks from the last competition on software verifica-
tion [7]. To ensure technical accuracy, we used the open-source benchmarking
framework BenchExec1 [12] to conduct our experiments. Tables with our detailed
experimental results are available on the supplementary web page 2.

Related Work. Unfortunately, there is not much work available in rigorous
comparison of algorithms. General overviews over methods for reasoning [6] and of
approaches for software model checking [28] exist, but no systematic comparison
of the algorithms in a common formal setting. This paper tries to give an abreast
comparison of the effectiveness and efficiency of the algorithms.

Figure 1 tries to categorize the main approaches for software model checking
that are based on SMT technology; we use this structure also to give pointers to
other implementations of the approaches.

Bounded Model Checking. Many software bugs can be found by a bounded search
through the state space of the program. Bounded model checking [15] for software
encodes all program paths that result from a bounded unrolling of the program in
an SMT formula that is satisfiable if the formula encodes a feasible program path
from the program entry to a violation of the specification. Several implementations
were demonstrated to be successful in improving software quality by revealing
shallow program bugs, for example Cbmc [19], Esbmc [20], Llbmc [39], and
Smack [35]. The characteristics to quickly verify a large portion of the state space
without the need of computing expensive abstractions made the technique a basis
component in many verification tools (cf. Table 4 in the report for SV-COMP
2016 [7]).

Unbounded — No Abstraction. The idea of bounded model checking (to encode
large portions of a program as SMT formula) can be used also for unbounded
verification by using an induction argument [40], i.e., a safe inductive invariant
needs to be implied by all paths from the program entry to the loop head and by
all paths starting from the assumed invariant (induction hypothesis) at the loop
head through the loop body. The remaining problem, which is a main focus area
of research on k-induction, is to compute a sufficient safe inductive invariant. The
approach of k-induction is implemented in Cbmc [19], CPAchecker [8], Esbmc [36],
Pkind [29], and 2ls [37]. The approach of k-induction with continuously-refining
invariant generation [8] was independently reproduced later in 2ls [17].

1 https://github.com/sosy-lab/benchexec
2 https://www.sosy-lab.org/∼dbeyer/k-ind-compare/

https://github.com/sosy-lab/benchexec
https://www.sosy-lab.org/~dbeyer/k-ind-compare/

SMT-based Software Model Checking

Bounded Model Checking Unbounded Model Checking

No Abstraction Abstraction

k-induction Predicate Abstraction Impact

Fig. 1: Classification of Algorithms

Unbounded — With Abstraction. A completely different approach is to compute
an over-approximation of the state-space, using insights from data-flow analy-
sis [1, 31, 34]. The idea of state-space abstraction is often combined with the idea
of counterexample-guided abstraction refinement (CEGAR) [18] and lazy ab-
straction refinement [27]. Several verifiers implement a predicate abstraction [24]:
Slam [4], Blast [9], and CPAchecker [10]. A safe invariant is computed by
iteratively refining the abstract states by discovering new predicates during each
CEGAR step. Interpolation [21, 32] is a successful method to obtain useful predi-
cates from error paths. Ultimate Automizer [26] combines predicate abstraction
with an automaton-based approach.

Instead of using predicate abstraction, it is possible to construct the abstract
state space directly from interpolants using the Impact algorithm [33].

Combinations. Of course, the best features of all approaches should be com-
bined into new, “hybrid” methods, such as implemented in CPAchecker [41],
SeaHorn [25], and UFO [2].

2 Algorithms

In the following, we will give a unifying overview over four widely-used algo-
rithms for software model checking: bounded model checking (BMC), k-induction,
predicate abstraction, and the Impact algorithm.

As shown in Fig. 1, all four algorithms are SMT-based model checking
algorithms: They rely on encoding program paths as SMT formulas.

Preliminaries. We restrict the presentation to a simple imperative programming
language, where all operations are either assignments or assume operations, and all
variables range over integers.3 We use control-flow automata (CFA) to represent
programs. A control-flow automaton consists of a set L of program locations
(modeling the program counter), the initial program location l2 ∈ L (modeling
the program entry), a target program location lE ∈ L (modeling the specification
violation), and a set of control-flow edges (modeling the operation that is executed
during the flow of control from one program location to another).

Example. Fig. 2 shows an example C program and the corresponding CFA. We
will use this example to illustrate the algorithms. The displayed C program

3 Our implementations are based on CPAchecker [10], which supports C programs.

1 int main() {
2 unsigned int x = 0;
3 unsigned int y = 0;
4 while (x < 2) {
5 x++;
6 y++;
7 if (x != y) {
8 ERROR: return 1;
9 }

10 }
11 return 0;
12 }

(a) Safe program

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

x < 2

!(x < 2)

x++;

y++;

x != y

ERROR: return 1;

return 0;

!(x != y)

(b) Control-flow automaton

Fig. 2: An example C program (a) and its CFA (b)

contains two variables x and y, which are both initialized to 0. In the loop of
lines 4–10, both variables are incremented as long as x is lower than 2. The CFA
nodes corresponding to this loop are l4, l5, l6, and l7, with l4 being the loop head.
At the end of the loop body in line 7, x and y are checked for equality. If the
variables are not equal, control flows to the error location l8 in line 8.
ABE: An SMT-formula-based program analysis. For the algorithms presented in
this paper, it is frequently required to represent the reachability of a program
state as a precise or over-approximated set of program paths that are encoded as
SMT formulas. A configurable program analysis (CPA) for this purpose has been
formally defined in previous work [11]. Adjustable-block encoding (ABE) is a
forward-reachability analysis that unrolls the control-flow automaton (CFA) into
an abstract reachability graph (ARG) while keeping track of arbitrarily-definable
(adjustable) blocks. An abstract state in the ARG is defined as a triple consisting
of a program location, an abstract-state formula, which represents an abstract
over-approximation of the reachability of the block entry, and a concrete path
formula, which for any state within a block represents the set of concrete paths
from the block entry to the location of this state. This mechanism can be used to
control if and when to apply abstraction by configuring the definition of block(s).
Two of the algorithms we present, BMC and k-induction, do not use abstraction,
while the other two, predicate abstraction and Impact, do. In the former case, the
abstract-state formula is always true and has no effect. For consistency, however,
we display the abstract-state formula in all our graphical representations.

Another feature required by the presented algorithms is the configuration of a
limit for unrolling the control-flow automaton into an ARG, because a complete
unrolling is not always desirable or even feasible. In addition to the configurability
of the definition of blocks, we therefore introduce such a limit on unrolling the
CFA as another parameter to configure the SMT-formula-based program analysis
ABE. In the following, we will describe the presented algorithms informally and
discuss their usage of configurable ABE program analysis as a convenient way to
construct, manage, and apply SMT formulas.

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,x0 = 0 ∧ y0 = 0,true)

A3: (l11,x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2),true)

A4: (l12,x0 = 0 ∧ y0 = 0 ∧ ¬(x0 < 2),true)

A5: (l5,x0 = 0 ∧ y0 = 0 ∧ x0 < 2,true)

A4: (l8,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1,true)

A7: (l7,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A8: (l8,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A9: (l12,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A10: (l4,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)),true)

A11: (l11,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A12: (l12,x0 = 0 ∧ y0 = 0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

Fig. 3: ARG fragment for applying BMC to the example of Fig. 2

Bounded Model Checking. In BMC, the state space of the analyzed program
is explored without using abstraction by unrolling loops up to a given bound k.
In this setting, ABE is configured so that there is only one single block of
unbounded size starting at the program entry. This way, there is never any
abstraction computation. The limit for unrolling the CFA with ABE in the
context of BMC is given by the loop-unrolling bound k.

Due to the single ABE block that contains the whole program, the path
formula of any state always represents a set of concrete program paths from the
program entry to the program location of this state. After unrolling a loop up
to bound k, the state-space exploration stops. Then, the disjunction of the path
formulas of all states in the explored state space at error location lE is checked
for satisfiability using an SMT solver. If the formula is satisfiable, the program
contains a real specification violation. If the formula is unsatisfiable, there is no
specification violation in the program within the first k loop unrollings. Unless an
upper bound lower than or equal to k for a loop is known, a specification violation
beyond the first k loop iterations may or may not exist. Due to this limitation,
BMC is usually not able to prove that a program satisfies its specification.

If we apply BMC with k = 1 to the example in Fig. 2, unrolling the CFA
yields the ARG depicted in Fig. 3. The path formula of the ARG state A8, which
is the only ARG state at error location lE = l8, is unsatisfiable. Therefore, no

bug is reachable within one loop unrolling. The bound k = 1 is not large enough
to completely unroll the loop; the second loop iteration, which is necessary to
have the loop condition x < 2 no longer satisfied, is missing from this ARG.

k-Induction. For ease of presentation, we assume that the analyzed program
contains exactly one loop head lLH . In practice, k-induction can be applied to
programs with many loops [8]. k-induction, like BMC, is an approach that at
its core does not rely on abstraction techniques. The k-induction algorithm is
comprised of two phases. The first phase is equivalent to a bounded model check
with bound k, and is called the base case of the induction proof. If a specification
violation is detected in the base case, the algorithm stops and the violation is
reported. Otherwise, the second phase is started. In the second phase, ABE is
used to re-explore the state space of the analyzed program, with the analysis and
the (single, unbounded) ABE block starting not at the program entry l2, but
at the loop head lLH , so that the path formula of any state always represents
a set of concrete program paths from the loop head to the program location of
this state. The limit for unrolling the CFA is set to stop at k + 1 loop unrollings.
Afterwards, an SMT solver is used to check if the negation of the disjunction of
all path formulas for states at the error location lE that were reached within k
loop unrollings, implies the negation of the disjunction of all path formulas for
states at the error location lE that were reached within k + 1 loop unrollings.
This step is called the inductive-step case. If the implication holds, the program is
safe, i.e., the safety property is a k-inductive program invariant. Often, however,
the safety property of a verification task is not directly k-inductive for any k, but
only relative to some auxiliary invariant, so that plain k-induction cannot succeed
in proving safety. In these cases, it is necessary to employ an auxiliary-invariant
generator and inject these invariants into the k-induction procedure to strengthen
the hypothesis of the inductive step case.

If we apply k-induction with k = 1 to the example in Fig. 2, the first phase,
which is equivalent to BMC, yields the same ARG as in Fig. 3. Figure 4 shows the
ARG of the second phase, which is constructed by unrolling the CFA starting at
loop head lLH = l4 and using loop bound k = 1. The negation of the disjunction
of the path formulas of the ARG states A5 and A10 at the error location lE = l8,
which were reached within at most one loop iteration, implies the negation of
the disjunction of the path formulas of the ARG states A5, A10, and A18 at
the error location lE = l8, which were reached within at most k + 1 = 2 loop
iterations, which in combination with the base case (BMC) from the first phase
proves that the program is safe. This inductive proof is strong enough to prove
safety even if we replace the loop condition in line 4 of the sample program by a
nondeterministic value.

Predicate Abstraction. Predicate abstraction with counterexample-guided
abstraction refinement (CEGAR) directly applies ABE within the CEGAR loop.
The abstraction-state formula of an abstract state over-approximates the reachable
concrete states using a boolean combination of predicates over program variables
from a given set of predicates (the precision π). This abstraction is computed by
an SMT solver. Using CEGAR, it is possible to apply lazy abstraction, starting

A0: (l4,true,true)

A1: (l11,¬(x0 < 2),true)

A2: (l12,¬(x0 < 2),true)

A3: (l5,x0 < 2,true)

A4: (l6,x0 < 2 ∧ x1 = x0 + 1,true)

A5: (l7,∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A6: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A7: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),true)

A8: (l4,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)),true)

A9: (l11,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A10: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2),true)

A11: (l5,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2,true)

A12: (l6,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1,true)

A13: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1,true)

A14: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2),true)

A15: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2),true)

A16: (l4,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)),true)

A17: (l11,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)) ∧ ¬(x2 < 2),true)

A18: (l12,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2)) ∧ ¬(x2 < 2),true)

Fig. 4: ARG fragment for the inductive step case of k-induction applied to the
example of Fig. 2

out with an empty initial precision. When the analysis encounters an abstract
state at the error location lE , the concrete program path leading to this state is
reconstructed and checked for feasibility using an SMT solver. If the concrete
error path is feasible, the algorithm reports the error and terminates. Otherwise,
the precision is refined (usually by employing an SMT solver to compute Craig
interpolants [21] for the locations on the error path) and the analysis is restarted.
Due to the refined precision, it is guaranteed that the previously identified
infeasible error paths are not encountered again.

For this technique, the blocks can be arbitrarily defined; in our experimental
evaluation we define a block to end at a loop head. To enable CEGAR, the
unrolling of the CFA must be configured to stop if the state-space exploration
hits a state at the error location lE .

If we apply predicate abstraction to the example in Fig.2 using a precision
π : {x = y} and defining all blocks to end at the loop head l4, we obtain

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,true,x = y)

A3: (l11,¬(x0 < 2),x = y)

A4: (l12,¬(x0 < 2),x = y)

A5: (l5,x0 < 2,x = y)

A6: (l6,x0 < 2 ∧ x1 = x0 + 1,x = y)

A7: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,x = y)

Fig. 5: ARG for predicate abstraction applied to the example of Fig. 2

the ARG depicted in Fig.5: The first block consists of the locations l2 and l3.
If the ABE analysis hits location l4, which is a loop head, the path formula
x0 = 0 ∧ y0 = 0 is abstracted using the set of predicates π. Precision π contains
only the predicate x = y, which is implied by the path formula and becomes the
new abstraction formula, while the path formula for the new block beginning
at l4 is reset to true. From that point onwards, there are two possible paths: one
directly to the end of the program the loop if x is greater than or equal to 2, and
another one into the loop if x is less than 2. The path avoiding the loop is trivially
safe, because from l11 or l12 there is no control-flow path back to the error location.
The path through the loop increments both variables before encountering the
assertion. Using the abstraction formula encoding the reachability of the block
entry in combination with the path formula, it is easy to conclude that the
assertion is true, so that the only feasible successor is at the loop head l4, which
causes the previous block to end. The abstraction computation yields again the
abstraction formula x = y at l4, which is already covered by the ARG state A2.
Therefore, unrolling the CFA into the ARG completed without encountering the
error location lE = l8. The algorithm thus concludes that the program is safe.

Impact. Lazy abstraction with interpolants, more commonly known as the
Impact algorithm due to its first implementation in the tool Impact, also uses
ABE to create an unwinding of the CFA similar to predicate abstraction. Impact,
however, does not base its abstractions on an explicit precision. Initializing all new
abstract-state formulas to true, the algorithm repeatedly applies the following
three steps until no further changes can be made:

(1) Expand(s): If the state s has no successors yet (s is currently a leaf node
in the ARG) and is not marked as covered, the successor states of s are created
with true as their initial abstract-state formula.

(2) Refine(s): If s is an abstract state at the error location lE with an abstract-
state formula different from false, inductive Craig interpolants for the path from
the root of the ARG to this state s are computed using an SMT solver. Each

A0: (l2,true,true)

A1: (l3,x0 = 0,true)

A2: (l4,true,��true x = y)

A3: (l11,¬(x0 < 2),true)

A4: (l12,¬(x0 < 2),true)

A5: (l5,x0 < 2,true)

A6: (l8,x0 < 2 ∧ x1 = x0 + 1,true)

A7: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A8: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x0 = y0),��true false)

A9: (l4,true,��true x = y)

A10: (l5,x0 < 2,true)

A11: (l6,x0 < 2 ∧ x1 = x0 + 1,true)

A12: (l7,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,true)

A13: (l8,x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1),��true false)

covered by

Fig. 6: Final ARG for applying the Impact algorithm to the example of Fig. 2

abstract state at an ABE block entry along this path is marked as not covered, and
its abstract-state formula is strengthened by conjoining it with the corresponding
interpolant, guaranteeing that if the state s is unreachable, the formula of s
becomes false.

(3) Cover(s1,s2): A state s1 gets marked as covered by another state s2 if
neither s2 nor any of its ancestors are covered, both states belong to the same
program location, the abstract-state formula of s2 is implied by the formula of
s1, s1 is not an ancestor of s2, and s2 was created before s1.

As in predicate abstraction, the ABE blocks can be arbitrarily defined; again,
we define a block to end at a loop head in our experimental evaluation of the
Impact algorithm. Since this algorithm is also based on CEGAR, the unrolling of
the CFA must again be configured to stop when the state-space exploration hits
a state at the error location lE , so that interpolation can be used to compute the
abstractions.

The original presentation of the Impact algorithm [33] also includes a descrip-
tion of an optimization called forced covering, which improves the performance
significantly but is not relevant for understanding the fundamental idea of the
algorithm and exceeds the scope of our summary.

If we apply the Impact algorithm to the example program from Fig. 2 defining
blocks to end at the loop head l4 and assuming that both interpolations that are
required during the analysis yield the interpolant x = y, we obtain an ARG as
depicted in Fig. 6: Starting with the initialization of the variables, we first obtain
the ARG states A0 and A1; at A2, however, we reset the path formula to true,
because l4 is a block entry. Note that at this point, the abstract-state formula for
this block is still true. Unwinding the first loop iteration, we first obtain abstract
states for incrementing the variables and then hit the error location lE = l8 with
state A8. An SMT check on the reconstructed concrete error path shows that
the path is infeasible, therefore, we perform an interpolation. For the example
we assume that interpolation provides the interpolant x = y, strengthen the
abstract-state formula of A2 with it, and set the abstract-state formula of A8

to false. Then, we continue the expansion of A7 towards l4 with state A9. Note
that at this point, the abstract-state formula for A9 is still true, so that it is not
covered by A2 with x = y. Also, A2 cannot be covered by A9, because A2 is an
ancestor of A9. We unwind the loop for another iteration and again hit the error
location l8 with state A13. Once again, the concrete path formula for this state
is infeasible, so we interpolate. For the example we assume that interpolation
provides again the interpolant x = y, use it to strengthen the abstract-state
formula of A9, and set the abstract-state formula of A13 to false. Now, a coverage
check reveals that A9 is covered by A2, because neither A9 nor any of its ancestors
is covered yet, both belong to the same location l4, x = y implies x = y, A9 is
not an ancestor of A2, and A2 was created before A9. Because A9 is now covered,
we need not continue expanding the other states in this block, and the algorithm
terminates without finding any feasible error paths, thus proving safety.
Summary. We showed how to apply the four algorithms to the example pre-
sented in Fig. 2 and gave a rough outline of the concepts required to implement
them. While BMC is very limited in its capacity of proving correctness, it is also
the most straightforward of the four algorithms, because k-induction requires
an auxiliary-invariant generator to be applicable in practice, and predicate ab-
straction and Impact require interpolation techniques. While invariant generator
and interpolation engine are usually treated as a black box in the description of
these algorithms, the efficiency and effectiveness of the techniques depends on
the quality of these modules.

3 Evaluation
We evaluate bounded model checking, k-induction, predicate abstraction, and
Impact, on a large set of verification tasks and compare the approaches.
Benchmark Set. As benchmark set we use the verification tasks from the 2016
Competition on Software Verification (SV-COMP’16) [7]. We took all 4 779 ver-
ification tasks from all categories except ArraysMemSafety, HeapMemSafety,
Overflows, Recursive, Termination, and Concurrency, which are not supported by
our implementations of the approaches. A total of 1 320 tasks in the benchmark
set contain a known specification violation, while the rest of the tasks is assumed
to be free of violations.

Table 1: Experimental results of the approaches for all 4 779 verification tasks,
1 320 of which contain bugs, while the other 3 459 are considered to be safe
Algorithm BMC k-induction Predicate Abstraction Impact

Correct results 1 024 2 482 2 325 2 306
Correct proofs 649 2 116 2 007 1 967
Correct alarms 375 366 318 339
False alarms 1 1 0 0
Timeouts 2 786 2 047 1 646 1 607
Out of memory 180 98 75 104
Other inconclusive 788 151 733 762

Times for correct results
Total CPU Time (h) 8.3 54 32 32
Avg. CPU Time (s) 29 79 49 50

Times for correct proofs
Total CPU Time (h) 4.3 44 26 27
Avg. CPU Time (s) 24 75 47 50

Times for correct alarms
Total CPU Time (h) 4.0 10 5.4 4.8
Avg. CPU Time (s) 38 100 61 51

Experimental Setup. Our experiments were conducted on machines with
two 2.6GHz 8-Core CPUs (Intel Xeon E5-2650 v2) with 135GB of RAM. The
operating system was Ubuntu 16.04 (64 bit), using Linux 4.4 and OpenJDK 1.8.
Each verification task was limited to two CPU cores, a CPU run time of 15min
and a memory usage of 15GB. We used version cpachecker-1.6.8-vstte16 of
CPAchecker, with MathSAT5 as SMT solver. We configured CPAchecker to
use the SMT theories over uninterpreted functions, bit vectors, and floats. To
evaluate the algorithms, we used ABE for Impact and predicate abstraction [14].
For Impact we also activated the forced-covering optimization [33], and for
k-induction we use continuously-refined invariants from an invariant generator
that employs an abstract domain based on intervals [8]. For bounded model
checking we use a configuration with forward-condition checking [23].
Experimental Validity. We implemented all evaluated algorithms using the
same software-verification framework, CPAchecker. This allows us to compare
the actual algorithms instead of comparing different tools with different front
ends and different utilities, thus eliminating influences on the results caused by
such implementation differences unrelated to the actual algorithms.
Results. Table 1 shows the number of correctly solved verification tasks for
each of the algorithms, as well as the time that was spent on producing these
results. None of the algorithms reported incorrect proofs 4, there was one false
alarm for bounded model checking, and one false alarm for k-induction. When an
algorithm exceeds its time or memory limit, it is terminated inconclusively. Other
4 For BMC, real proofs are accomplished by successful forward-condition checks, which
prove that no further unrolling is required to exhaustively explore the state space.

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

C
P
U

 t
im

e
 (

s)

n-th fastest correct proof

BMC
k-Induction

Predicate abstraction
Impact

(a) Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

C
P
U

 t
im

e
 (

s)

n-th fastest correct alarm

BMC
k-Induction

Predicate Abstraction
Impact

(b) Alarms

Fig. 7: Quantile plots for all correct proofs and alarms

inconclusive results are caused by crashes, for example if an algorithm encounters
an unsupported feature, such as recursion or large arrays. For k-induction, there
is sometimes a chance that while other techniques must give up due to such an
unsupported feature, waiting for the invariant generator to generate a strong
invariant will help avoid the necessity of handling the problem, which is why
k-induction has fewer crashes but instead more timeouts than the other algorithms.
The quantile plots in Fig. 7 shows the accumulated number of successfully solved
tasks within a given amount of CPU time. A data point (x, y) of a graph means
that for the respective configuration, x is the number of correctly solved tasks
with a run time of less than or equal to y seconds. As expected, bounded model
checking produces both the fewest correct proofs and the most correct alarms,
confirming BMC’s reputation as a technique that is well-suited for finding bugs.
Having the fewest amount of solved tasks, BMC also accumulates the lowest
total CPU time for correct results. Its average CPU time is on par with the
abstraction techniques, because even though the approach is less powerful than
the other algorithms, it still is expensive, because it has to completely unroll
loops. On average, BMC spends 3.0 s on formula creation, 4.7 s on SMT-checking
the forward condition, and 13 s on SMT-checking the feasibility of error paths.
The slowest technique by far is k-induction with continuously-refined invariant
generation, which is the only technique that effectively uses both available cores
by running the auxiliary-invariant generation in parallel to the k-induction
procedure, thus almost spending twice as much CPU time as the other techniques.
Like BMC, k-induction also does not use abstraction and spends additional
time on building the step-case formula and generating auxiliary invariants, but
can often prove safety by induction without unrolling loops. Considering that
over the whole benchmark set, k-induction generates the highest number of
correct results, the additional effort appears to be mostly well spent. On average,
k-induction spends 4.4 s on formula creation in the base case, 4.2 s on SMT-
checking the forward condition, 4.8 s on SMT-checking the feasibility of error
paths, 22 s on creating the step-case formula, 21 s on SMT-checking inductivity,
and 11 s on generating auxiliary invariants, which shows that much more effort is
required in the inductive step-case than in the base case. Predicate abstraction
and the Impact algorithm both perform very similarly for finding proofs, which
matches the observations from earlier work [14]. An interesting difference is

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate Abstraction
Impact

(a) DeviceDrivers: Correct proofs

 1

 10

 100

 1000

 0 100 200 300 400 500

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

k-Induction
Predicate Abstraction

Impact

(b) ECA: Correct Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

(c) ProductLines: Correct Proofs

 1

 10

 100

 1000

 0 50 100 150 200 250

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

(d) ProductLines: Correct Alarms

Fig. 8: Quantile plots for some of the categories

that the Impact algorithm finds more bugs. We attribute this observation to
the fact that abstraction in the Impact algorithm is lazier than with predicate
abstraction, which allows Impact larger parts of the state space in a shorter
amount of time than predicate abstraction, causing Impact to find bugs sooner.
For verification tasks without specification violations, however, the more eager
predicate-abstraction technique pays off, because it requires fewer recomputations.
Although in total, both abstraction techniques have to spend the same effort,
this effort is distributed differently across the various steps: While, on average,
predicate abstraction spends more time on computing abstractions (21 s) than
the Impact algorithm (7.5 s), the latter requires the relatively expensive forced-
covering step (13 s on average).

Although the plot in Fig. 7a suggests that k-induction with continuously-
refined invariants outperforms the other techniques in general for finding proofs,
a closer look at the results in individual categories, some of which are displayed
in Fig. 8, reveals that how well an algorithm performs strongly depends on the
type of verification task, but also reconfirms the observation of Fig. 7b that
BMC consistently performs well for finding bugs. For example, on the safe tasks
of the category on Linux device drivers in Fig. 8a, k-induction performs much
worse than predicate abstraction and Impact. These device drivers are often
C programs with many lines of code, containing pointer arithmetics and complex
data structures. The interval-based auxiliary-invariant generator that we used
for k-induction is not a good fit for such kinds of problems, and a lot of effort is
wasted, while the abstraction techniques are often able to quickly determine that
many operations on pointers and complex data structures are irrelevant to the

safety property. We did not include the plot for the correct alarms in the category
on device drivers, because each of the algorithms only solves about 20 tasks, and
although k-induction and BMC are slower than the abstraction techniques, which
matches the previous observations on the correct proofs, there is not enough
data among the correct alarms to draw any conclusions. The quantile plot for
the correct proofs in the category of event condition action systems (ECA) is
displayed in Fig. 8b. BMC in not included in this figure, because there is no
single task in the category it could unroll exhaustively. These tasks usually
only consist of a single loop, but each of these loops contains very complex
branching structures over many different integer variables, which leads to an
exponential explosion of paths, so unrolling them is very expensive in terms of
time and memory. Also, because in many tasks, almost all of the variables are in
some way relevant to the reachability of the error location within this complex
branching structure, the abstraction techniques are unable to come up with useful
abstractions, and perform badly. The interval-based auxiliary-invariant generator
that we use for k-induction, however, appears to provide invariants useful for
handling the complexity of the control structures, so that k-induction performs
much better than all other techniques in this category. We did not include the plot
for the correct alarms in this category, because the abstraction techniques are not
able to detect a single bug, and only BMC and k-induction detect one single bug
for the same task, namely Problem10_label46_false-unreach-call.c. Fig. 8c
shows the quantile plot for correct proofs in the category on product lines. Similar
to the proofs over all categories depicted in Fig. 7a, k-induction solves about
as more tasks than the other techniques, but is becomes even more apparent
how much slower than the other techniques it is. Fig. 8d shows the quantile
plot for correct alarms in the same category. It is interesting to observe that
the Impact algorithm distinctly outperforms predicate abstraction on the tasks
requiring over 100 s of CPU time, whereas in the previous plots, the differences
between the two abstraction techniques were hardly visible. While, ash shown
in Fig. 8c, both techniques report almost the same amount of correct proofs
(305 for predicate abstraction, 308 for Impact), Impact detects 130 bugs, whereas
predicate abstraction detects only 121. This seems to indicate that the state-space
spanned by the different product-line features can be explored more quickly by
lazy abstraction of Impact than with the more eager predicate abstraction.

Individual Examples. The previous discussion showed that while overall, the
algorithms perform rather similar (apart from BMC being inappropriate for
finding proofs, which is expected), each of them has some strengths due to which
it outperforms the other algorithms on certain programs. In the following, we will
list some examples from our benchmark set that were each solved by one of the
algorithms, but not by the others, and give a short explanation of the reasons.

BMC. For example, only BMC can find bugs in the verification tasks
cs_lazy_false-unreach-call.i and rangesum40_false-unreach-call.i.
Surprisingly, by exhaustively unrolling a loop, BMC is the only of our four tech-
niques that is able to prove safety for the tasks sep20_true-unreach-call.i
and cs_stateful_true-unreach-call.i. All four of these tasks have in com-

mon that they contain bounded loops and arrays. The bounded loops are a good
fit for BMC and enable it to prove correctness, while the arrays make it hard
in practice for predicate abstraction and Impact to find good abstractions by
interpolation. k-induction, which in theory is at least as powerful as BMC, spends
too much time trying to generate auxiliary invariants and exceeds the CPU time
limit before solving these tasks.

k-induction. k-induction is the only of our four techniques to prove the correctness
of all of the safe tasks in the (non-simplified) ssh subset of our benchmark set,
while none of the other three techniques can solve any of them. These tasks
encode state machines, i.e., loops over switch statements with many cases, which
in turn modify the variable that is considered by the switch statement. These
loops are unbounded, so that BMC cannot exhaustively unroll them, and the loop
invariants that are required to prove correctness of these tasks need to consider
the different cases and their interaction across consecutive loop iterations, which
is beyond the scope of the abstraction techniques but very easy for k-induction
(cf. [8] for a detailed discussion of a similar example).

Predicate Abstraction. toy_true-unreach-call_false-termination.cil.c is
a task that is only solved by predicate abstraction but by none of our other im-
plementations. It consists of an unbounded loop that contains complex branching
structure over integer variables, most of which only ever take the values 0, 1 or 2.
Interpolation quickly discovers the abstraction predicates over these variables
required to solve the task, but in this example, predicate abstraction profits from
eagerly computing a sufficiently precise abstraction early after only 9 refinements
while the lazy refinement technique used by Impact exceeds the time limit after
129 refinements, and the invariant generator used by k-induction fails to find the
required auxiliary invariants before reaching the time limit.

Impact. The task Problem05_label50_true-unreach-call.c from the ECA
subset of our benchmark set is only solved by Impact: BMC fails on this task due
to the unbounded loop, and the invariant generator used by k-induction does not
come up with any meaningful auxiliary invariants before exceeding the time limit.
Predicate abstraction exceeds the time limit after only three refinements, and up
to that point, over 80% of its time is spent on eagerly computing abstractions.
The lazy abstraction performed by Impact, however, allows it to progress quickly,
and the algorithm finishes after 7 refinements.

4 Conclusion

This paper presents an overview over four state-of-the-art algorithms for SMT-
based software model checking. First, we give a short explanation of each algorithm
and illustrate the effect on how the state-space exploration looks like. Second,
we provide the results of a thorough experimental study on a large number of
verification tasks, in order to show the effect and performance of the different
approaches, including a detailed discussion of particular verification tasks that
can be solved by one algorithms while all others fail. In conclusion, there is no

clear winner: there are disadvantages and advantages for each approach. We
hope that our experimental overview is useful to understand the difference of the
algorithms and the potential application areas.
Future Work. In our comparison, one well-known algorithm is missing: PDR
(property-driven reachability) [16]. We plan to formalize this algorithm in our
framework and implement it in CPAchecker as well.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for
abstraction- and interpolation-based software verification. In Proc. CAV, LNCS 7358,
pages 672–678. Springer, 2012.

3. T. Ball, B. Cook, V. Levin, and S. Rajamani. SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In Proc. IFM, LNCS 2999,
pages 1–20. Springer, 2004.

4. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with
SLAM. Commun. ACM, 54(7):68–76, 2011.

5. T. Ball and S. K. Rajamani. The slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

6. B. Beckert and R. Hähnle. Reasoning and verification: State of the art and current
trends. IEEE Intelligent Systems, 29(1):20–29, 2014.

7. D. Beyer. Reliable and reproducible competition results with BenchExec and
witnesses. In Proc. TACAS, pages 887–904. Springer, 2016.

8. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

9. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker
blast. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–525, 2007.

10. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV, LNCS 6806, pages 184–190. Springer, 2011.

11. D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-
block encoding. In Proc. FMCAD, pages 189–197. FMCAD, 2010.

12. D. Beyer, S. Löwe, and P. Wendler. Benchmarking and resource measurement. In
Proc. SPIN, LNCS 9232, pages 160–178. Springer, 2015.

13. D. Beyer and A. K. Petrenko. Linux driver verification. In Proc. ISoLA, LNCS 7610,
pages 1–6. Springer, 2012.

14. D. Beyer and P. Wendler. Algorithms for software model checking: Predicate
abstraction vs. impact. In Proc. FMCAD, pages 106–113. FMCAD, 2012.

15. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, LNCS 1579, pages 193–207. Springer, 1999.

16. A. R. Bradley. SAT-based model checking without unrolling. In Proc. VMCAI,
LNCS 6538, pages 70–87. Springer, 2011.

17. M. Brain, S. Joshi, D. Kröning, and P. Schrammel. Safety verification and refutation
by k-invariants and k-induction. In Proc. SAS, pages 145–161. Springer, 2015.

18. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-642-31424-7_48
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1007/978-3-540-24756-2_1
http://dx.doi.org/10.1145/1965724.1965743
http://dx.doi.org/10.1145/1965724.1965743
http://dx.doi.org/10.1145/503272.503274
http://dx.doi.org/10.1145/503272.503274
http://dx.doi.org/10.1109/MIS.2014.3
http://dx.doi.org/10.1109/MIS.2014.3
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/1998496.1998532
http://dx.doi.org/1998496.1998532
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-642-34032-1_1
http://dx.doi.org/10.1007/978-3-642-34032-1_1
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-642-18275-4
http://dx.doi.org/10.1007/978-3-642-18275-4
http://dx.doi.org/10.1007/978-3-662-48288-9_9
http://dx.doi.org/10.1007/978-3-662-48288-9_9
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/876638.876643

19. E. M. Clarke, D. Kröning, and F. Lerda. A tool for checking ANSI-C programs. In
Proc. TACAS, LNCS 2988, pages 168–176. Springer, 2004.

20. L. Cordeiro, J. Morse, D. Nicole, and B. Fischer. Context-bounded model checking
with esbmc 1.17 (competition contribution). In Proc. TACAS, LNCS 7214, pages
534–537. Springer, 2012.

21. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb.
Log., 22(3):250–268, 1957.

22. A. F. Donaldson, L. Haller, D. Kröning, and P. Rümmer. Software verification
using k-induction. In Proc. SAS, LNCS 6887, pages 351–368. Springer, 2011.

23. M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in bounded
model checking of c programs via k-induction. STTT, pages 1–18, 2015.

24. S. Graf and H. Saïdi. Construction of abstract state graphs with pvs. In Proc.
CAV, LNCS 1254, pages 72–83. Springer, 1997.

25. A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A framework for verifying C
programs (competition contribution). In Proc. TACAS, LNCS 9035, pages 447–450.
Springer, 2015.

26. M. Heizmann, D. Dietsch, M. Greitschus, J. Leike, B. Musa, C. Schätzle, and
A. Podelski. Ultimate Automizer with two-track proofs (competition contribution).
In Proc. TACAS, LNCS 9636, pages 950–953. Springer, 2016.

27. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

28. R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys,
41(4), 2009.

29. T. Kahsai and C. Tinelli. Pkind: A parallel k-induction based model checker. In
Proc. Int. Workshop on Parallel and Distributed Methods in Verification, EPTCS 72,
pages 55–62, 2011.

30. A. V. Khoroshilov, V. Mutilin, A. K. Petrenko, and V. Zakharov. Establishing
Linux driver verification process. In Proc. Ershov Memorial Conference, LNCS 5947,
pages 165–176. Springer, 2009.

31. G. A. Kildall. A unified approach to global program optimization. In Proc. POPL,
pages 194–206. ACM, 1973.

32. K. L. McMillan. Interpolation and SAT-based model checking. In Proc. CAV,
LNCS 2725, pages 1–13. Springer, 2003.

33. K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV, LNCS 4144,
pages 123–136. Springer, 2006.

34. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

35. Z. Rakamarić and M. Emmi. SMACK: Decoupling source language details from
verifier implementations. In Proc. CAV, LNCS 8559, pages 106–113. Springer, 2014.

36. H. Rocha, H. I. Ismail, L. C. Cordeiro, and R. S. Barreto. Model checking embedded
C software using k-induction and invariants. In Proc. SBESC. IEEE, 2015.

37. P. Schrammel and D. Kröning. 2LS for program analysis (competition contribution).
In Proc. TACAS, LNCS 9636, pages 905–907. Springer, 2016.

38. V. Schuppan and A. Biere. Liveness checking as safety checking for infinite state
spaces. Electr. Notes Theor. Comput. Sci., 149(1):79–96, 2006.

39. C. Sinz, F. Merz, and S. Falke. Llbmc: A bounded model checker for llvm’s inter-
mediate representation (competition contribution). In Proc. TACAS, LNCS 7214,
pages 542–544. Springer, 2012.

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-28756-5_42
http://dx.doi.org/10.1007/978-3-642-28756-5_42
http://dx.doi.org/10.1007/978-3-642-28756-5_42
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.1007/978-3-642-23702-7
http://dx.doi.org/10.1007/978-3-642-23702-7
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-662-49674-9_68
http://dx.doi.org/10.1007/978-3-662-49674-9_68
http://dx.doi.org/10.1007/978-3-662-49674-9_68
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.4204/EPTCS.72
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1007/978-3-642-11486-1_14
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1145/512927.512945
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1109/SBESC.2015.24
http://dx.doi.org/10.1109/SBESC.2015.24
http://dx.doi.org/10.1007/978-3-662-49674-9_56
http://dx.doi.org/10.1007/978-3-662-49674-9_56
http://dx.doi.org/10.1016/j.entcs.2005.11.018
http://dx.doi.org/10.1016/j.entcs.2005.11.018
http://dx.doi.org/10.1007/978-3-642-28756-5_44
http://dx.doi.org/10.1007/978-3-642-28756-5_44
http://dx.doi.org/10.1007/978-3-642-28756-5_44

40. T. Wahl. The k-induction principle, 2013. Available at http://www.ccs.neu.edu/
home/wahl/Publications/k-induction.pdf.

41. P. Wendler. CPAchecker with sequential combination of explicit-state analysis and
predicate analysis (competition contribution). In Proc. TACAS, LNCS 7795, pages
613–615. Springer, 2013.

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45
http://dx.doi.org/10.1007/978-3-642-36742-7_45

