
J Autom Reasoning (2018) 60:299–335
https://doi.org/10.1007/s10817-017-9432-6

A Unifying View on SMT-Based Software Verification

Dirk Beyer1 · Matthias Dangl1 ·
Philipp Wendler1

Received: 1 September 2017 / Accepted: 5 September 2017 / Published online: 4 December 2017
© Springer Science+Business Media B.V. 2017

Abstract After many years of successful development of new approaches for software ver-
ification, there is a need to consolidate the knowledge about the different abstract domains
and algorithms. The goal of this paper is to provide a compact and accessible presentation
of four SMT-based verification approaches in order to study them in theory and in practice.
We present and compare the following different “schools of thought” of software verifica-
tion: bounded model checking, k-induction, predicate abstraction, and lazy abstraction with
interpolants. Those approaches are well-known and successful in software verification and
have in common that they are based on SMT solving as the back-end technology. We refor-
mulate all four approaches in the unifying theoretical framework of configurable program
analysis and implement them in the verification framework CPAchecker. Based on this,
we can present an evaluation that thoroughly compares the different approaches, where the
core differences are expressed in configuration parameters and all other variables are kept
constant (such as parser front end, SMT solver, used theory in SMT formulas). We evaluate
the effectiveness and the efficiency of the approaches on a large set of verification tasks and
discuss the conclusions.

Keywords Software verification · Program analysis · Bounded model checking ·
k-induction · Impact · Lazy abstraction · Predicate abstraction · SMT solving

1 Introduction

In recent years, advances in automatic methods for software verification have lead to an
increased effort towards applying software verification to industrial systems, in particular
operating-systems code [5,8,24,56]. Predicate abstraction [47] with counterexample-guided
abstraction refinement (CEGAR) [34] and lazy abstraction [51], lazy abstraction with inter-

A preliminary version of this article was published in Proceedings of VSTTE 2016 [12].

1 LMU Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-017-9432-6&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7333-6734
http://orcid.org/0000-0002-5139-341X

300 D. Beyer et al.

SMT-based Software Model Checking

Bounded Model Checking Unbounded Model Checking

No Abstraction

k-Induction

Abstraction

Predicate Abstraction IMPACT

Fig. 1 Classification of approaches

polants [61], large-block encoding [11,21], and k-induction with auxiliary invariants [13,41]
are some of the concepts that helped scale verification technology from simple example
programs to real-world software. In the 6th International Competition on Software Verifica-
tion (SV-COMP’17) [10], nine out of the 15 candidates participating in category Overall
used some of these techniques, and out of the remaining six, four are bounded model
checkers [26]. Considering this apparent success, we revisit an earlier work that presented a
unifying algorithm for lazy predicate abstraction (Blast-like) and lazy abstractionwith inter-
polants (Impact-like) and showed that both techniques perform similarly [25]. We extend
this unifying framework to bounded model checking and k-induction and conduct a com-
parative evaluation of bounded model checking, k-induction, lazy predicate abstraction, and
lazy abstraction with interpolants. We observe that the previously drawn conclusions about
the two lazy-abstraction techniques still hold today and show that even though abstraction
is often necessary for scalability, k-induction has the potential to outperform the other two
techniques. We restrict our presentation to safety properties; however, the techniques that we
present can be used also for checking liveness [67].

Unfortunately, there is not much work available on rigorous comparison of algorithms.
General overviews over methods for reasoning [9] and of approaches for software model
checking [53] exist, but no systematic comparison of the algorithms in a common setting.
This paper formulates four widely used SMT-based approaches for software verification in
a common theoretical framework and tool implementation and compares their effectiveness
and efficiency. Figure 1 tries to classify the approaches; in the following we use this structure
also to give pointers to other implementations of the approaches.

1.1 Bounded Model Checking

Many software bugs can be found by a bounded search through the state space of the pro-
gram. Bounded model checking [26] for software encodes all program paths that result from
a bounded unrolling of the program in an SMT formula that is satisfiable if the formula
encodes a feasible program path from the program entry to a violation of the specification.
Several implementations were demonstrated to be successful in improving software quality
by revealing program bugs (especially on short paths), for example Cbmc [35], Esbmc [37],
Llbmc [69], and Smack [64]. The characteristics to quickly verify even a large portion of the
state space of many types of programs without the need of computing expensive abstractions
made the technique a basis component in many verification tools (cf. Table 4 in the report
for SV-COMP’17 [10]).

123

A Unifying View on SMT-Based Software Verification 301

1.2 Unbounded without Abstraction1

The idea of bounded model checking (to encode portions of a program as SMT formula,
even if they are large) can be used also for unbounded verification by using an induction
argument [68], i.e., checking whether the safety property is implied by all paths from the
program entry to the loop head and after assuming the safety property at the loop head
(induction hypothesis) by all paths through the loop body. Because the safety property is
often not inductive, the more general k-induction principle [70] is used. The approach of
k-induction is implemented in Cbmc [35], CPAchecker [13], Esbmc [65], PKind [55],
and 2ls [66]. The approach of strengthening k-induction proofs with continuously refining
invariant generation [13] was independently reproduced later in 2ls [29].

1.3 Unbounded with Abstraction

A completely different approach is to compute an overapproximation of the state space, using
insights from data-flow analysis [1,57,63]. While overapproximation can be a useful tech-
nique formitigating the problemof state-space explosion, a too coarse level of abstractionmay
cause false alarms.Therefore, state-space abstraction is often combinedwith counterexample-
guided abstraction refinement (CEGAR) [34] and lazy abstraction refinement [51]. Several
verifiers implement a predicate abstraction [47]: for example, Slam [6], Blast [15],
and CPAchecker [20]. A safe inductive invariant is computed by iteratively refining
the abstract states, where new predicates are discovered during each CEGAR step.
Interpolation [38,60] is a successful method to obtain useful predicates from infeasible error
paths; path invariants [17] can be used to obtain loop invariants for path programs.

Instead of using predicate abstraction, it is possible to construct the abstract state space
directly from interpolants using the Impact algorithm [61].

1.4 Structure

In the remainder of this article, we first describe some necessary background in Sect. 2 and
define a configurable program analysis as the foundation for unifying SMT-based approaches
for software verification in Sect. 3. In Sect. 4, we express the four approaches within our
framework and explain their core concepts and respective differences. Section 5 contains an
experimental study of the effectiveness and efficiency of the presented approaches on a large
set of verification tasks.

2 Background

2.1 Program Representation

In this section we provide basic definitions from the literature [15]. For simplicity, we restrict
the presentation to a simple imperative programming language,where all operations are either
assignments or assume operations, and all variables range over integers.2 Such a program
can be represented using a control-flow automaton (CFA), which is a directed graph with

1 Strictly speaking, every verification technique attempts to construct an abstraction in the sense that a
successful safety proof would establish the safety property as a valid abstraction of the program. In this
classification, we differentiate between abstraction techniques that deliberately construct an abstract model of
the program from derived abstract facts and non-abstraction techniques that aim to prove the safety property
without constructing such an (auxiliary) abstract model of any kind.
2 Our implementation is based on CPAchecker [20], which supports C programs.

123

302 D. Beyer et al.

program operations attached to its edges. A CFA A = (L, lINIT ,G) consists of a set L of
program locations, an initial location lINIT ∈ L that represents the program entry point, and a
set G ⊆ (L× Ops ×L) of edges between program locations, each labeled with an operation
that is executed when the control flows along the edge. The set of all program variables that
occur in the operations of a CFA is denoted by X . A concrete data state c : X → Z is a
mapping from program variables to integers. A set of concrete data states is called region. We
represent regions using first-order formulas ψ over variables from X such that the set [[ψ]]
of concrete data states that is represented by ψ is defined as {c | c |� ψ}. A concrete state
(c, l) : (X → Z) × L is a pair of a concrete data state and a location.

An operation op ∈ Ops can either be an assignment of the form x := e with a variable
x ∈ X and a (side-effect free) arithmetic expression e over variables from X , or an assume
operation [p] with a predicate p over variables from X . The semantics of an operation op is
defined by the strongest-postcondition operator SPop(·). For a formulaψ and an assignment
x := e, it is defined as SPx :=e(ψ) = ∃x̂ : ψ[x→x̂] ∧ (x = e[x→x̂]), and for an assume opera-
tion [p] as SP[p](ψ) = ψ ∧ p. Note that in the implementation we can avoid the existential
quantifier in the strongest-postcondition operator for assignments by skolemization.

A path σ = 〈(li , opi , l j), (l j , op j , lk), . . . , (lm, opm, ln)〉 is a sequence of consecutive
edges from G. A path is called program path if it starts in the initial location lINIT . The
semantics of a path is defined by the iterative application of SPop(·) for each operation of
the path: SPσ (ψ) = SPopm (. . . (SPopi (ψ)) . . .). A path σ is called feasible if SPσ (true) is
satisfiable and infeasible otherwise. A location l is called reachable if there exists a feasible
path from lINIT to l.

A verification task consists of a CFA A = (L, lINIT ,G) and an error location lERR ∈ L,
with the goal to show that lERR is unreachable in A, or to find a feasible error path (i.e., a
feasible program path to lERR) otherwise.

Example 1 (Program andControl-FlowAutomaton) Figure 2 shows an example C pro-
gram and the corresponding CFA. Location lINIT = l2 is the initial location of this
program. The program contains two variables x and y, which are both initialized to 0. In
the loop of lines 4–10, both variables are incremented as long as x is lower than 2. The
CFA nodes corresponding to this loop are l4, l5, l6, and l7, with l4 being the loop head.
At the end of the loop body in line 7, x and y are checked for equality. If the variables
are not equal, control flows to the error location lERR = l8 in line 8. We use this CFA
as a running example to illustrate the concepts introduced in Sect. 3 and the algorithms
presented in Sect. 4.

2.2 Configurable Program Analysis

A configurable program analysis (CPA) [18] specifies the abstract domain that is used for
a program analysis. By using the concept of CPAs we can define the abstract domain inde-
pendently from the analysis algorithm: the CPA algorithm is an algorithm for reachability
analysis that can be usedwith any CPA. Furthermore, CPAs can be combined to compositions
of CPAs. The CPAs defined in this work make use of the extension CPA+ (dynamic precision
adjustment) [19], but for simplicity we continue to name them CPAs.

A CPA D = (D,Π,�,merge, stop,prec) consists of an abstract domain D, a set Π

of precisions, a transfer relation �, and the operators merge, stop, and prec. The abstract
domain D = (C, E, [[·]]) consists of a set C of concrete states, a semilattice E = (E,
)

over a set E of abstract-domain elements (i.e., abstract states) and a partial order
 (the

123

A Unifying View on SMT-Based Software Verification 303

1 int main() {

2 unsigned int x = 0;

3 unsigned int y = 0;

4 while (x < 2) {

5 x++;

6 y++;

7 if (x != y) {

8 ERROR: return 1;

9 }

10 }

11 return 0;

12 }

(a) Safe program

l2start

l3

l4

l5

l6

l7

l8

l11

l12

unsigned int x = 0;

unsigned int y = 0;

[x < 2]

[!(x < 2)]

x++;

y++;

[x != y]

ERROR: return 1;

return 0;

[!(x!= y)]

(b) Control-flow automaton

Fig. 2 An example C program (a) and its CFA (b)

join � of two elements and the join � of all elements are unique), and a concretization
function [[·]] that maps each abstract-domain element to the represented set of concrete states.
We call an abstract state e ∈ E an abstract error state if it represents a concrete state at
the error location lERR, i.e., if ∃c ∈ (X → Z) : (c, lERR) ∈ [[e]]. The transfer relation
�⊆ E × E × Π computes abstract successor states under a precision. The merge operator
merge : E × E × Π → E specifies if and how to merge two abstract states when control
flow meets under a given precision. The stop operator stop : E × 2E × Π → B determines
whether an abstract state is covered by a given set of abstract states. The precision-adjustment
operatorprec : E×Π×2E×Π → E×Π allows adjusting the analysis precision dynamically
depending on the current set of reachable abstract states. The operatorsmerge,stop, andprec
canbe chosen appropriately to influence the abstraction level of the analysis.Commonchoices
include mergesep(e, e′, π) = e′ (which does not merge abstract states), stopsep(e, R, π) =
(∃e′ ∈ R : e
 e′) (which determines coverage by checking whether the given abstract state
is less than or equal to any other reachable abstract state according to the semilattice), and
precid(e, π, ·) = (e, π) (which keeps abstract state and precision unchanged).

2.2.1 CPA Algorithm

CPAs can be used by the CPA algorithm for reachability analysis (cf. Algorithm 1), which
gets as input a CPA and an initial abstract state with precision. The algorithm does a classic
fixed-point iteration by looping until the set waitlist is empty (all abstract states have been
completely processed) and returns the set of reachable abstract states. In each iteration, the
algorithm takes one abstract state e with precision π from the waitlist, passes them to the
precision-adjustment operator prec, computes all abstract successors, and processes each of
the successors. The algorithm checks if there is an existing abstract state with precision in

123

304 D. Beyer et al.

Algorithm 1 CPA+(D, eINIT , πINIT), taken from [19]
Input: a CPA D = (D, Π, �,merge, stop, prec),

where E denotes the set of elements of the semilattice of D,
and an initial abstract state eINIT ∈ E with precision πINIT ∈ Π ,

Output: a set of reachable abstract states
Variables: two sets reached and waitlist of elements of E × Π

1: reached := {(eINIT , πINIT)}
2: waitlist := {(eINIT , πINIT)}
3: while waitlist �= ∅ do
4: pop (e, π) from waitlist
5: (̂e, π̂) := prec(e, π, reached) // Adjust the precision.
6: for all e′ with ê � (e′, π̂) do
7: for all (e′′, π ′′) ∈ reached do
8: enew := merge(e′, e′′, π̂) // Combine with existing abstract state.
9: if enew �= e′′ then
10: waitlist := (

waitlist ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
11: reached := (

reached ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
12: if not stop(e′, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state if needed.
13: waitlist := waitlist ∪ {(e′, π̂)}
14: reached := reached ∪ {(e′, π̂)}
15: return {e | (e, ·) ∈ reached}

the set of reached states with which the successor abstract state is to be merged (e.g., at join
points where control flow meets after completed branching). If this is the case, then the new,
merged abstract state with precision substitutes the existing abstract state with precision in
both sets reached andwaitlist. The stop operator ensures that a new abstract state is inserted
into the work sets only if this is needed, i.e., the abstract state is not already covered by an
abstract state in the set reached.

2.2.2 Composite CPA

Several CPAs can be combined (Composite pattern) using aCompositeCPA [18]. The abstract
states of the Composite CPA are tuples of one abstract state from each component CPA, the
precisions of the Composite CPA are tuples of one precision from each component CPA, and
the operators of the Composite CPA delegate to the component CPAs’ operators accordingly.

The effect of such a combination of CPAs is that all used CPAs work together in elimi-
nating infeasible paths during the program analysis: one CPA might be able to prove some
specific paths infeasible, whereas other CPAs might rule out other infeasible paths. The
analysis will only find paths which all used CPAs agree to be feasible. Note that this effect
already occurs without any form of communication or information exchange between the
component CPAs, and neither does any of the component CPAs need to know anything
about the others. However, for an even higher precision, information exchange is possible
if desired using the strengthen operator ↓ [18] and precision-adjustment operator prec [19]
of the Composite CPA.

2.2.3 Basic CPAs

The possibility to combine CPAs by using a Composite CPA allows us to separate different
concerns: we extract certain common analysis components into separate CPAs and reuse
them in flexible combinations with other CPAs, instead of having to redefine them for every
analysis from scratch.

123

A Unifying View on SMT-Based Software Verification 305

For example, for most kinds of program analyses it is necessary to track the program
counter, and it is often efficient to track the program counter explicitly rather than symboli-
cally. Thus, we use the Location CPA L [19], which tracks exactly the program counter (with
a flat lattice over all program locations, a constant precision, and the operators mergesep,
stopsep, and precid), and we use this CPA in addition to other CPAs whenever explicit
tracking of the program counter is necessary.

Furthermore, in order to track the abstract reachability graph (ARG) over the abstract states
in the (flat) set reached, we define an additional ARG CPAA, which stores the predecessor–
successor relationship between abstract states. TheARGCPAallowsus to reconstruct abstract
paths in the ARG: An abstract path is a sequence 〈e0, . . . , en〉 of abstract states such that
for any pair (ei , ei+1) with i ∈ {0, . . . , n − 1} either ei+1 is an abstract successor of ei , or
ei+1 is the result of merging an abstract successor of ei with some other abstract state(s). If
both the Location CPA and the ARG CPA are used, we can reconstruct from an abstract path
the path that it represents in the CFA.

2.3 Counterexample-Guided Abstraction Refinement (CEGAR)

Counterexample-guided abstraction refinement (CEGAR) [34] is an approach for iteratively
finding an analysis precision that is strong enough to prove the program safe and coarse
enough to allow for an efficient analysis. Starting with a coarse initial precision (typically
an empty set of facts, e.g., predicates), an abstract model that is an overapproximation of the
program is created by the underlying reachability analysis. If an abstract state that belongs to
the error location is found in the abstract model, the concrete program path that leads to this
state is reconstructed from the ARG and checked for feasibility. If the error path is feasible,
the program is unsafe and the analysis terminates. Otherwise, the error path is infeasible, and
we refine the precision of the analysis to be precise enough to eliminate this infeasible error
path from the ARG. Then the analysis is restarted, and the steps are repeated until either a
concrete error path is found, or the abstract model (and thus the program) is proven safe.

CEGAR is often combined with lazy abstraction [51], which makes this approach more
efficient by increasing the precision only selectively in parts of the state space where it is
needed and by not restarting the analysis from scratch after each refinement. We use the
CPA algorithm for the creation of the abstract model in the CEGAR approach and let the
refinement influence the precision of the used CPA(s).

3 Predicate CPA

Our goal is to define a configurable and flexible framework for predicate-based approaches
that is helpful both in theory (by simplifying development and studying of approaches) as
well as in practice (by being customizable for different use cases). In addition, a mature and
efficient implementation of this framework should allow reliable scientific experiments and
application in practice of the approaches that are integrated now or in the future.

The core of our framework is defined as a CPA for predicate-based analyses, which we
name the Predicate CPA P. It is an extension of an existing CPA for predicate abstrac-
tion with adjustable-block encoding (ABE) [21], and a preliminary version was already
published [25]. The Predicate CPA P = (DP,ΠP,�P,mergeP, stopP,precP) consists
of the abstract domain DP, the set ΠP of precisions, the transfer relation �P, the merge
operator mergeP, the stop operator stopP, and the operator precP for dynamic precision
adjustment. Additionally, we will define an operator fcoverP for Impact-style forced cov-

123

306 D. Beyer et al.

ering and an operator refineP for refinements. In the following, we will define and describe
these parts in more details. We also provide an extended version of the CPA algorithm, and in
the next section we will describe how to express various algorithms for software verification
using the concepts defined here. The examples in this section illustrate some cases that occur
when verifying the running example program given in Fig. 2 using one of these algorithms
from Sect. 4.

3.1 Abstract Domain, Precisions, and CPA Operators

The abstract domain DP = (C, EP, [[·]]P) consists of the set C of concrete states, the
semilattice EP over abstract states, and the concretization function [[·]]P. The semilat-
tice EP = (EP,
P) consists of the set EP of abstract states and the partial order
P.

3.1.1 Abstract States

Because of the use of adjustable-block encoding [21], an abstract state e ∈ EP of the
Predicate CPA is a triple (ψ, lψ , ϕ) of an abstraction formula ψ , the abstraction loca-
tion lψ (the program location where ψ was computed), and a path formula ϕ. Both
formulas are first-order formulas over predicates over the program variables from the
set X , and an abstract state represents all concrete states that satisfy their conjunction:
[[(ψ, lψ , ϕ)]]P = {(c, ·) ∈ C | c |� (ψ ∧ ϕ)}. The partial order
P is defined as
(ψ1, lψ1, ϕ1)
P (ψ2, lψ2, ϕ2) = ((ψ1 ∧ ϕ1) ⇒ (ψ2 ∧ ϕ2)), i.e., an abstract state is less
than or equal to another state if the conjunction of the formulas of the first state implies the
conjunction of the formulas of the other state. Abstract states where the path formula ϕ is
true are called abstraction states, other abstract states are intermediate states. The transfer
relation produces only intermediate states, and at the end of a block of program operations the
operator prec computes an abstraction state from an intermediate state. The initial abstract
state is the abstraction state (true, lINIT , true).

The path formula of an abstract state is always represented syntactically as an SMT
formula. The representation of the abstraction formula, however, can be configured. We can
either use a binary-decision diagram (BDD) [31], as in classic predicate abstraction [15,47], or
anSMT formula similar to the path formula.UsingBDDs allows performing cheap entailment
checks between abstraction states at the cost of an increased effort for constructing the BDDs.

3.1.2 Precisions

A precision π ∈ ΠP of the Predicate CPA is a mapping from program locations to sets
of predicates over the program variables. This allows using a different abstraction level at
each location in the program (lazy abstraction). The initial precision is typically the mapping
π(l) = ∅, for all l ∈ L. The Predicate CPA does not use dynamic precision adjustment [19]
during an execution of the CPA algorithm: instead the precision is adjusted only during a
refinement step, if the predicate refinement strategy is used. The only operation that changes
its behavior based on the precision is the predicate abstraction that may be computed at block
ends by the operator precP.

3.1.3 Transfer Relation

The transfer relation (ψ, lψ , ϕ) � ((ψ, lψ , ϕ′), π) for a CFA edge (li , opi , l j) produces a
successor state (ψ, lψ , ϕ′) such that the abstraction formula and location stay unchanged and
the path formula ϕ′ is created by applying the strongest-postcondition operator for the current

123

A Unifying View on SMT-Based Software Verification 307

CFA edge to the previous path formula: ϕ′ = SPopi (ϕ). Note that this is an inexpensive,
purely syntactical operation that does not involve any actual solving, and that it is a precise
operation, i.e., it does not perform any form of abstraction.

3.1.4 Merge Operator

Themerge operatormergeP combines intermediate states that belong to the same block (their
abstraction formula and location is the same) and keeps any other abstract states separate:

mergeP
((

ψ1, l
ψ
1, ϕ1

)

,
(

ψ2, l
ψ
2, ϕ2

)

, π
)

=
{

(

ψ2, lψ2, ϕ1 ∨ ϕ2
)

if (ψ1 = ψ2) ∧ (

lψ1 = lψ2
)

(

ψ2, lψ2, ϕ2
)

otherwise

This definition is common for analyses based on adjustable-block encoding (ABE) [21].
By merging abstract states inside each block, the number of abstract states in the ARG is
kept small, and no precision is lost due to merging, because the path formula of an abstract
state exactly represents the path(s) from the block start without abstraction. At the same
time the loss of information that would lead to a path-insensitive analysis if states would
be merged across blocks is avoided. The result is that the ARG, if projected to contain only
abstraction states, forms an abstract-reachability tree (ART) like in a path-sensitive analysis
without ABE. This is necessary for being able to reconstruct abstract paths, for example
during refinement and for reporting concrete error paths.

3.1.5 Stop Operator

The stop operator stopP checks coverage only for abstraction states and always returns false
for intermediate states:

stopP((ψ, lψ , ϕ), R, π)

=
{

∃(ψ ′, lψ ′
, ϕ′) ∈ R : ϕ′ = true ∧ (ψ, lψ , ϕ)
P (ψ ′, lψ ′

, ϕ′) if ϕ = true

false otherwise

Because the path formula of an abstraction state is always true, the first case is equivalent
to checking if there exists an abstraction state (ψ ′, ·, true) in the set R whose abstraction
formulaψ ′ is implied by the abstraction formulaψ of the current abstraction state (ψ, lψ , ϕ).
If abstraction formulas are represented by BDDs, this is an efficient operation, otherwise a
potentially costly SMT query is required. The coverage check for intermediate states is
omitted for efficiency, because it would always need to involve (potentially many) SMT
queries. Note that this implies that infinitely long sequences of intermediate states must be
avoided, otherwise the analysis would not terminate.

3.1.6 Precision-Adjustment Operator

The precision-adjustment operator precP either returns the input abstract state and precision,
or converts an intermediate state into an abstraction state performing predicate abstraction.
The decision is made by the block-adjustment operator blk [21], which returns true or false
depending on whether the current block ends at the current abstract state and thus an abstrac-
tion should be computed. The decision can be based on the current abstract state as well as
on information about the current program location. We define the following common choices

123

308 D. Beyer et al.

for blk: blklf returns true at loop heads, function calls/returns, and at the error location lERR,
leading to a behavior similar to large-block encoding (LBE) [11]. blkl returns true only at
loop heads and at the error location lERR. The abstraction at the error location is needed
for detecting the reachability of abstract error states due to the satisfiability check that is
implicitly done by the abstraction computation if the precision is not empty. blknever always
returns false. This will prevent all abstractions and (due to how stopP is defined) also pre-
vents coverage between abstract states. This means that an analysis with blknever will unroll
the CFA endlessly until other reasons prevent this. We will show a meaningful application
of blknever in Sect. 4.1 (BMC).

The boolean predicate abstraction [7] (ϕ)
ρ

B
of a formula ϕ for a set ρ of predicates is

the strongest boolean combination of predicates from ρ that is implied by ϕ. It can be
computed using an SMT solver by solving ϕ ∧ ∧

pi∈ρ(vpi ⇔ pi) and enumerating all its
models with respect to the fresh boolean variables vp1 , . . . , vp|ρ| . For each model we create
a conjunction over the predicates from ρ, with each predicate pi being negated if the model
maps the corresponding variable vpi to false. The result of (ϕ)

ρ

B
is the disjunction of all these

conjunctions. To create an abstraction state from an intermediate state (ψ, lψ , ϕ) at program
location l (which is tracked by another CPA that runs in parallel to the Predicate CPA as
a sibling component within the same Composite CPA and from which the location can be
retrieved), we compute the boolean predicate abstraction (ψ ∧ ϕ)

π(l)
B

for the formula ψ ∧ ϕ

and the set π(l) of predicates from the precision, after adjusting the variable names of ψ to
match those of ϕ (because the variables from ψ need to match the ’oldest’ variables in ϕ).
Thus, we can define the precision-adjustment operator as

precP
((

ψ, lψ , ϕ
)

, π, R
) =

{
((

(ψ ∧ ϕ)
π(l)
B

, l, true
)

, π
)

if blk
((

ψ, lψ , ϕ
)

, l
)

((

ψ, lψ , ϕ
)

, π
)

otherwise

Note that, if an abstraction is going to be computed, the current path formula ϕ precisely
represents all the paths within this block (i.e., from the last abstraction state to the current
abstract state). Thus, we name this path formula the block formula for the block ending
in the current abstract state. If the precision is empty for the current program location, the
outcome of the abstraction computation will always simply be true and no SMT queries
are necessary. If the precision for the current program location is {false}, the abstraction
computationwill be equivalent to a simple satisfiability check, and the outcomewill always be
either true or false.

Example 2 (Boolean Predicate Abstraction) Given an intermediate abstract state
(ψ, lψ,ϕ) with

ψ = (x = y), which is rewritten to x0 = y0, and
ϕ = x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1,

and a set ρ of predicates with ρ = {x = y} we introduce a boolean variable vx=y for the
(instantiated) predicate x1 = y1 and use an SMT solver to enumerate all models of the
following formula

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (vx=y ⇔ x1 = y1)

with respect to variable vx=y . In this case, {vx=y �→ true} is the only such model. As a
result, the abstraction is x = y.

123

A Unifying View on SMT-Based Software Verification 309

3.2 Refinement

The refinement operator refineP takes as input two sets reached ⊆ E×Π of reached abstract
states and waitlist ⊆ E × Π of frontier abstract states and expects reached to contain an
abstract error state at error location lERR that represents a specification violation. refine either
returns the sets unchanged (if the abstract error state is reachable, i.e., there is a feasible error
path), or modified such that the sets can be used for continuing the state-space exploration
with an increased precision (if the error path is infeasible). The operator works in four steps.

3.2.1 Abstract-Counterexample Construction

The first step is to construct the set of abstract paths between the initial abstract state and the
abstract error state. Traditionally, in an abstract reachability tree, there would exist exactly
one such abstract path. Because we use ABE, however, intermediate states can be merged,
and thus the abstract states form an abstract reachability graph, where several paths can
exist from the initial abstract state to the abstract error state. All these abstract paths to the
abstract error state contain the same sequence of abstraction states with varying sequences of
intermediate states in between. This is due to the fact that abstraction states are never merged,
and intermediate states are merged only locally within a block. Thus, the ARG, if projected
to the abstraction states, still forms a tree. The initial abstract state is always an abstraction
state by definition, and our choices of the block-adjustment operator blk ensure that all
abstract error states are also abstraction states. Thus, we define as abstract counterexample
the sequence 〈e0, . . . , en〉 that begins with the initial abstract state (e0 = eINIT), ends with the
abstract error state en , and contains all abstraction states e1, . . . , en−1 on paths between these
two abstract states. This sequence can be reconstructed from the ARG by following a single
arbitrary abstract path backwards from the abstract error state (using the information tracked
by the ARG CPA), without needing to explicitly enumerate all (potentially exponentially
many) abstract paths between the initial abstract state and the abstract error state.

3.2.2 Feasibility Check

From an abstract counterexample 〈e0, . . . , en〉 we can create a sequence 〈ϕ1, . . . , ϕn〉 of
block formulas where each ϕi represents all paths between ei−1 and ei . Note that each ϕi is
also exactly the same formula as the path formula that was used as input when computing
the abstraction for state ei . Then we check whether there exists a feasible concrete path
that is represented by one of the abstract paths of the abstract counterexample by checking
the counterexample formula

∧n
i=1 ϕi for satisfiability in a single SMT query. If satisfiable,

the analysis has found a violation of the specification and terminates. Otherwise, i.e., if all
abstract paths to the abstract error state are infeasible under the concrete program semantics,
we say that the abstract counterexample is spurious, and a refinement of the abstract model
is necessary to eliminate this infeasible error path from the ARG.

3.2.3 Interpolation

To refine the abstract model, refineP uses Craig interpolation [38] to discover abstract facts
that allow eliminating the infeasible error path. Given a sequence ϕ̂ = 〈ϕ1, . . . , ϕn〉 of for-
mulas whose conjunction is unsatisfiable, a sequence 〈τ0, . . . , τn〉 is an inductive sequence
of interpolants for ϕ̂ if

123

310 D. Beyer et al.

1. τ0 = true and τn = false,
2. ∀i ∈ {1, . . . , n} : τi−1 ∧ ϕi ⇒ τi , and
3. for all i ∈ {1, . . . , n − 1}, τi references only variables that occur in

∧i
j=1 ϕi as well as

in
∧n

j=i+1 ϕi .

Note that every interpolation sequence starts with no assumption (τ0 = true) and ends with
a contradiction (τn = false), and that τi ⇒ ¬∧n

j=i+1 ϕ j follows from the definition, for
all i ∈ {1, . . . , n}. For many common SMT theories, interpolants are guaranteed to exist
and can be computed using off-the-shelf SMT solvers from a proof of unsatisfiability for
∧n

i=1 ϕi . Note that in general there exist many possible sequences of interpolants for a single
infeasible error path.

Example 3 (Interpolation) Given a sequence ϕ̂ = 〈ϕ1, ϕ2〉 of formulas, where

ϕ1 = (x0 = 0 ∧ y0 = 0) and
ϕ2 = (x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (x1 �= y1)),

the sequence 〈τ0, τ1, τ2〉 with
τ0 = true,
τ1 = (x0 = y0), and
τ2 = false

is a valid sequence of interpolants for ϕ̂, because it satisfies the definition above:

1. τ0 = true and τn = false,
2. true ∧ x0 = 0 ∧ y0 = 0 ⇒ x0 = y0 and

x0 = y0 ∧ x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ (x1 �= y1) ⇒ false, and
3. τ1 references the variables x0 and y0, which occur in both ϕ1 and ϕ2.

3.2.4 Refinement Strategies

Lastly, refineP needs to refine the precision of the analysis such that afterwards the analysis is
guaranteed to not encounter the same error path again. A refinement strategy uses the current
spurious abstract counterexample 〈e0, . . . , en〉 and the corresponding sequence 〈τ0, . . . , τn〉
of interpolants tomodify the sets reached andwaitlist. For this step, two common approaches
exist. Afterwards, the refinement is finished, the modified sets reached and waitlist are
returned to the analysis, and the analysis continues with building the abstract model (which
will now be more precise).

Impact Refinement. One refinement strategy is to perform a refinement similar to the
function Refine of the Impact algorithm [61]. The Impact refinement strategy takes each
abstraction state ψi of the abstract counterexample and conjoins to its abstraction formula
the corresponding interpolant τi . If an abstract state is actually strengthened by this (i.e., the
previous abstraction formula did not already imply the interpolant), we also need to recheck
all coverage relations of this abstract state. Figure 3a outlines such a situation: an abstract
state e′

i previously covered by another abstract state ei is now no longer covered, because the
abstraction formula of ei was strengthened by the refinement. In this case, we uncover and
readd all leaf abstract states in the subgraph of the ARG that starts with the uncovered abstract
state e′

i to the setwaitlist. We also check for each of the strengthened abstract states whether

123

A Unifying View on SMT-Based Software Verification 311

e0:
(lINIT , (true, lINIT , true))

ei:
(li, (·, li, true))

ei:
(li, (ψi τi, li, true))

en:
(lERR, (true false, lERR, true))

covered by

e0:
(lINIT , (true, lINIT , true))

ej :
(lj , (·, lj , true))

ej :
(lj , (ψj τj , lj , true))

en:
(lERR, (true false, lERR, true))

covered by

< <

<<

(a) Abstract state e′ may lose coverage by
strengthened abstract state ei

(b) Strengthened abstract state ej may gain
coverage by abstract state e′

i

j

Fig. 3 Sketches of the process of rechecking coverage relations after Impact refinement. Squiggly arrows
represent paths between abstraction states and hide intermediate states

it is now covered by any other abstract state at the same program location. If this is successful,
i.e., if a strengthened abstract state e j is now covered by another abstract state e′

j as shown in
Fig. 3b, we mark the subgraph that starts with that strengthened abstract state e j as covered
and remove all leafs therein fromwaitlist (we do not need to expand covered abstract states).
The only change to the set reached is the removal of all abstract states whose abstraction
formula is now equivalent to false and their successors. Due to the properties of interpolants,
this is guaranteed to be the case for at least the abstract error state.

Example 4 (Impact Refinement) Given

– a set of program locations L = {l2, l4, l8},
– an abstract counterexample 〈e0, e1, e2〉,
– a corresponding sequence of program locations 〈l2, l4, l8〉 where

e0 is at program location l2 = lINIT ,
e1 is at program location l4, and
e2 is at program location l8 = lERR,

– and a sequence of interpolants 〈τ0, τ1, τ2〉 with
τ0 = true at l2,
τ1 = (x0 = y0) at l4, and
τ2 = false at l8,

we directly strengthen the abstract states e1 and e2 by conjoining the interpolant x0 = y0
to the abstraction formula of e1 and conjoining the interpolant false to the abstraction
formula of e2.

We then remove e2 from the set reached because its abstraction formula is now
equivalent to false, check if the strengthening of the abstraction formula of e1 invalidated
any coverage relations, such that we readd leafs of subgraphs of abstract states that
became uncovered, check if the strengthening of the abstraction formula of e1 caused e1
to become covered by any other state so that we remove all leaf states of its subgraph
from the set waitlist, and then continue the state-space exploration.

123

312 D. Beyer et al.

Predicate Refinement. Another refinement strategy is used for traditional lazy predicate
abstraction. It extracts the atoms of the interpolants as predicates, creates a new preci-
sion π with these predicates, and restarts (a part of) the analysis with a new precision that is
extended by π .

The precision π is a mapping from program locations to sets of predicates, and we add
predicates to the precision only for program locations where they are necessary. Assuming
that, starting from an abstract counterexample 〈e0, . . . , en〉 with abstraction states at pro-
gram locations 〈l0, . . . , ln〉we obtained a sequence 〈τ0, . . . , τn〉 of interpolants and extracted
a sequence 〈ρ0, . . . , ρn〉 of sets of predicates. Then we add each predicate to the preci-
sion for the program location that corresponds to the point in the abstract counterexample
where the predicate appears in the interpolant, i.e., π(l) = ⋃n

i=0(ρi if l = li else ∅).
Note that due to the properties of interpolants, π(lERR) will always be {false}. We take
the precision π with the new predicates and the existing precision πn that is associ-
ated in the set reached with the abstract error state en and join them element-wise to
create the new precision π ′ with ∀l ∈ L : π ′(l) = πn(l) ∪ π(l) that will be used
in the subsequent analysis.

Finally, the sets reached and waitlist are prepared for continuing with the analysis.
We remove only those parts of the ARG for which the new predicates are neces-
sary. For this, we determine the first abstract state of the abstract counterexample for
which the new precision π ′ would lead to more predicates being used in the abstrac-
tion computation than the originally used predicates and call this the pivot abstract
state. Then we remove the subgraph of the ARG that starts with the pivot abstract
state from the sets reached and waitlist, as well as all abstract states that were cov-
ered by one of the removed abstract states. To ensure that the removed parts of
the ARG get re-explored, we take all remaining parents of removed abstract states,
replace the precision with which they are associated in reached with the new preci-
sion π ′, and add them to the set waitlist. This has not only the effect of avoiding
the re-exploration of unchanged parts of the ARG, but also leads to the new pred-
icates being used only in the relevant part of the ARG, with other parts of the
program state space being explored with different (possibly more abstract and thus
more efficient) precisions.

Example 5 (Predicate Refinement) Given

– a set of program locations L = {l2, l4, l8},
– an initial precision πn , with ∀l ∈ L : πn(l) = ∅,
– an abstract counterexample 〈e0, e1, e2〉,
– a corresponding sequence of program locations 〈l2, l4, l8〉 where

e0 is at program location l2 = lINIT ,
e1 is at program location l4, and
e2 is at program location l8 = lERR,

– and a sequence of interpolants 〈τ0, τ1, τ2〉 with
τ0 = true at l2,
τ1 = (x0 = y0) at l4 and
τ2 = false at l8,

123

A Unifying View on SMT-Based Software Verification 313

we extract the sequence 〈ρ0, ρ1, ρ2〉 of sets of predicates with
ρ0 = {} at l2,
ρ1 = {x = y} at l4, and
ρ2 = {false} at l8.

We then use this sequence of sets of predicates to construct the precision π :

π(l2) = ρ0 = {},
π(l4) = ρ1 = {x = y}, and
π(l8) = ρ2 = {false}.
Joining the previous precision πn with the newly obtained precision π yields the

updated precision π ′ (π ′ = π because πn is empty for each location).
As a result, the first abstract state in the abstract counterexample that is affected by

the new precision is e1, which therefore becomes the pivot state and is removed from the
ARG, along with all its descendants in the ARG, including e2. Then, starting from the
predecessors of e1, the state space is re-explored using the new precision π ′.

3.3 Forced Covering

Forced coverings were introduced for lazy abstraction with interpolants (Impact) [61] for a
faster convergence of the analysis. Typically, when theCPAalgorithm creates a new successor
abstract state for an Impact analysis, this new abstract state is too abstract to be covered by
existing abstract states, since the Impact refinement strategy is used, which leads to all new
abstraction states being equivalent to true. If an abstract state cannot be covered, the analysis
needs to further create successors of it, leading to more abstract states and possibly more
refinements. The idea of forced covering is to strengthen new abstract states such that they
are covered by existing abstract states immediately if possible.

We define an operator fcoverP : 2E×Π × E × Π → 2E×Π that takes as input the set
reached of reachable abstract states and an abstract state e with precision π and returns
an updated set reached′ of reachable abstract states. The operator may replace e and other
abstract states in reachedwith strengthened versions, if it can guarantee that this is sound and
if afterwards the strengthened version of e is covered by another abstract state in reached′. A
trivial implementation of this operator is fcoverid(reached, e, π) = reached, which does
not strengthen abstract states and returns the set reached unchanged.

An alternative implementation is fcoverImpact, which adopts the strategy for forced cov-
erings presented for lazy abstraction with interpolants [61]. We extend this approach here
to support adjustable-block encoding. Because the Predicate CPA does not attempt to cover
intermediate states (only abstraction states),we also only attempt forced coverings for abstrac-
tion states. Figure 4 shows a sketch of the concept of forced covering in Impact to help
visualize the following explanation: Given an abstraction state e that should be covered if
possible, the candidate abstract states for covering are those abstraction states that belong to
the same location, were created before e, and are not covered themselves. For each candi-
date e′, we first determine the nearest common ancestor abstraction state ê of e and e′ (using
the information tracked by the ARG CPA). Now let us denote the abstraction formulas of e′
and êwithψ ′ and ψ̂ , respectively, and let ϕ be the path formula that represents the paths from
ê to e. We then determine whether ψ ′ also holds for e by checking if ψ̂ ∧ ϕ �⇒ ψ ′ holds,
i.e., whether it is impossible to reach a concrete state that is not represented byψ ′ when start-
ing at ê and following the paths to e. If this holds, we can strengthen the abstraction formula

123

314 D. Beyer et al.

e0: (lINIT , (true, lINIT , true))

e: (l , (ψ, l , true))

e : (l , (ψ , l , true))e: (l , (true ψ , l , true))
covered by<

ϕ

Fig. 4 Concept sketch for fcoverImpact, blue parts are added on successful forced covering,
i.e., if ψ̂ ∧ ϕ ⇒ ψ ′

of e with ψ ′ (which immediately lets us cover e by e′). Furthermore, if there are abstraction
states along the paths from ê to e, we need to strengthen these states, too, in order to keep the
ARGwell-formed.We can do so by computing interpolants at the appropriate locations along
the paths for the query that we have just solved and strengthen the abstract states with the
interpolants. If the query does not hold, we switch to the next candidate abstract state and try
again. Finally, fcoverImpact returns an updated set reachedwith strengthened abstract states,
or the original set reached if forced covering was unsuccessful for each of the candidates.
Note that this forced-covering strategy is similar to interpolation-based refinement with the
Impact refinement strategy, just that we attempt to prove thatψ ′ instead of false holds at the
end of the path, and that the refined path does not start at the initial abstract state but at ê.

3.4 An Extended CPA Algorithm

In order to be able to use all the features of the Predicate CPA and support approaches such
as lazy abstraction, we also need to slightly extend the CPA algorithm. The extended version,
which we call the CPA++ algorithm, is shown as Algorithm 2. Compared to the original
version (Algorithm 1), it has the following differences:

1. CPA++ gets reached andwaitlist as input and returns updated versions of both of them,
instead of getting an initial abstract state and returning a set of reachable abstract states.

2. CPA++ calls a function abort to determine whether it should abort early for each found
abstract state (lines 16–17).

3. CPA++ calls the precision-adjustment operator immediately for each new abstract state
(line 7) instead of only before expanding an abstract state.

4. CPA++ attempts a forced covering by calling fcover before expanding an abstract state
(lines 3–5).

The first two changes allow calling CPA++ iteratively and keep expanding the same set
of abstract states, which is necessary for CEGAR with lazy abstraction (where we want
to abort as soon as we find an abstract error state and continue after refinement without
restarting from scratch; abort(e) is typically implemented to return true if e is an abstract
state at error location lERR). The new position of the call to the precision-adjustment oper-
ator is necessary because previously the resulting abstract states (̂e in Algorithm 1) were
never put into reached. However, we need the abstract states resulting from prec to be in
reached, because among them are the abstraction states of the Predicate CPA, which are
necessary for refinement.

Similar changes to theCPAalgorithmhave been used previously [22,25]; we now combine
them in order to provide an all-encompassing algorithm for reachability that we can use as
building block for our unifying framework for predicate-based software verification.

123

A Unifying View on SMT-Based Software Verification 315

Algorithm 2 CPA++(D, reached,waitlist,abort), extension of Algorithm 1
Input: a CPA D = (D, Π, �,merge, stop, prec) with additional operator fcover,

where E denotes the set of elements of the semilattice of D,
a set reached ∈ E × Π of reachable abstract states
a set waitlist ∈ E × Π of frontier abstract states, and
a function abort : E → B that defines whether the algorithm should abort early

Output: the updated sets reached and waitlist
1: while waitlist �= ∅ do
2: pop (e, π) from waitlist
3: reached := fcover(reached, e, π)

4: if (e, π) /∈ reached then
5: continue // Forced covering was successful.
6: for all e′ with e � (e′, π) do
7: (̂e, π̂) := prec(e′, π, reached) // Adjust the precision of the abstract state.
8: for all (e′′, π ′′) ∈ reached do
9: enew := merge(̂e, e′′, π̂) // Combine with existing abstract state.
10: if enew �= e′′ then
11: waitlist := (

waitlist ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
12: reached := (

reached ∪ {(enew, π̂)}) \ {(e′′, π ′′)}
13: if not stop(̂e, {e | (e, ·) ∈ reached}, π̂) then // Add new abstract state if needed.
14: waitlist := waitlist ∪ {(̂e, π̂)}
15: reached := reached ∪ {(̂e, π̂)}
16: if abort(̂e) then
17: return (reached,waitlist)
18: return (reached,waitlist)

4 Unifying SMT-Based Approaches for Software Verification

In this section, we will give a unifying overview of four widely used approaches to software
verification: bounded model checking (BMC), k-induction, predicate abstraction, and the
Impact algorithm. We reformulate the approaches in our theoretical framework from the
previous section and illustrate their differences using our example program.

In the following, the Predicate CPA P is always combined with at least the CPA L for
program-counter tracking and the ARG CPA A for tracking the predecessor–successor as
well as coverage relations between ARG nodes. We show relations between ARG nodes
graphically in the figures and omit them for ease of presentation when notating abstract
states as tuples. For path formulas, we use a skolemized notation based on SSA indices [39],
which is easier to read than existential quantification of many variables. Index addition and
removal is done implicitly when converting between abstraction formulas and path formulas.

4.1 Bounded Model Checking

For bounded model checking, we set the ABE block size to infinite (we call this whole-
program encoding) by using the block operator blknever , and we use fcoverid (i.e., no forced
coverings). Additionally, we combine the Predicate CPA with a CPA for bounding the state
space besides the typical basic CPAs.

The Loop-Bound CPA LB tracks in its abstract states for every loop of the program how
often the loop body was traversed on the current program path. It associates each loop-head
locationwith a counter that startswith−1 and is incremented by the transfer relationwhenever
the respective location is reached. The precision is the loop bound k: π = k, with k > 0.
The transfer relation of the Loop-Bound CPA is unsound on purpose: it does not produce any
successor abstract states for abstract states in which one of the counters for the loop-head

123

316 D. Beyer et al.

locations is equal to the loop bound k in the precision and thus prevents the analysis from
exploring any paths for more than k loop iterations. Apart from that, the Loop-Bound CPA
uses the standard operatorsmergesep, stopsep, and precid .

This configuration leads to an analysis without abstraction computations, expensive cov-
erage checks, and refinements. Instead, the CPA++ algorithm simply unrolls the CFA (within
the loop bound), and each abstract state contains a path formula that exactly represents the
paths from the initial location to this abstract state. We wrap the CPA++ algorithm in another
algorithm that checks satisfiability of the path formula of each abstract error state after the
CPA++ algorithm has finished (we can use Algorithm 3, which is discussed in Sect. 4.2, for
this by omitting lines 15–23). If at least one path formula is satisfiable (for efficiency, we
check the disjunction of all path formulas at once in line 10 of Algorithm 3), then there exists
a feasible path to the error location, i.e., the specification is violated.

We can also implement a forward-condition check [44] by making an additional SMT
query for the satisfiability of the path formulas of all those abstract states for which the
Loop-Bound CPA has unsoundly restricted the successor abstract states. If none of these
path formulas is satisfiable, the specification is proven to hold for the program. If for a
given loop bound k the result was inconclusive (i.e., no specification violation found but the
forward-condition check was unsuccessful, too), we can repeat the bounded model check
with a higher k.

Example 6 (BMC) If we apply BMC with k = 1 to the program of Fig. 2, unrolling
the CFA yields the ARG depicted in Fig. 5. In this figure, each abstract state is a tuple
(l, (ψ, lψ , ϕ), {l4 �→ i}) of the abstract states of L, P, and LB. The path formula of
the abstract state e8, which is the only abstract state at error location lERR = l8, is
unsatisfiable. Therefore, no bug is reachable within one loop unrolling. The abstract
state e10 is the last state in this ARG because here the bound k = 1 is reached. In order
to do a forward-condition check we check the satisfiability of the path formula of e10.
Because the formula is satisfiable and thus, e10 is reachable, we can conclude that the
bound k = 1 is not large enough to fully verify this program.

4.2 k-Induction

For ease of presentation, we assume here that the loop head is not reachable from the error
location lERR and that the analyzed program has exactly one loop whose loop-head location
is lLH . In practice, k-induction can be applied to programs with many loops [13].

k-Induction, like BMC, is an approach that at its core does not rely on abstraction
techniques. We present an algorithm for k-induction-based verification based on the Pred-
icate CPA as Algorithm 3. This algorithm supports iterative deepening and injection of
continuously refined invariants. We can use this algorithm in combination with (external)
standard invariant-generation techniques, such as data-flow analysis [57,63] and template-
based approaches [16,36]. This is necessary, because often the safety property of a verification
task is not directly k-inductive for any k, but only relative to some auxiliary invariant, so
that plain k-induction cannot succeed in proving safety. Strengthening the hypothesis of
the inductive-step case with auxiliary invariants may allow the algorithm to prove such
properties as well.

Algorithm 3 gets as input initial andmaximal values for the loop bound and a function that
computes the next loop bound after each iteration (this function can for example increase the
value by one, or double it). Additionally we give the algorithm a combination of CPAs (as a
composite CPA) that includes the Location CPA L (cf. Sect. 2.2), our Predicate CPA P in the

123

A Unifying View on SMT-Based Software Verification 317

e0: (l2, (true, l2, true), {l4 1})

e1: (l3, (true, l2, x0 = 0), {l4 1})

e2: (l4, (true, l2, x0 = 0 y0 = 0), {l4 0})

e3: (l11, (true, l2, x0 = 0 y0 = 0 ¬(x0 < 2)), {l4 0})

e4: (l12, (true, l2, x0 = 0 y0 = 0 ¬(x0 < 2)), {l4 0})

e5: (l5, (true, l2, x0 = 0 y0 = 0 x0 < 2), {l4 0})

e6: (l6, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1), {l4 0})

e7: (l7, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1), {l4 0})

e8: (l8, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(x1 = y1)), {l4 0})

e9: (l12, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(x1 = y1)), {l4 0})

e10: (l4, (true, l2, x0 = 0 y0 = 0 x0 < 2 x1 = x0 + 1 y1 = y0 + 1 ¬(¬(x1 = y1))), {l4 1})

<

<<

<<

<<

<

<

<
<

<

<<

< < < <
<

<<<<

<<<

<<
<

→

→

→

→

→

→

→

→

→

→

→

–

–

Fig. 5 ARG for applying BMC to the example of Fig. 2

configuration for boundedmodel checking, and theLoop-BoundCPALB (cf. Sect. 4.1). Thus,
each abstract state is a tuple of the current program counter l (this is an abstract state of L),
a predicate abstract state (which is itself a tuple of an abstraction formula, an abstraction
location, and a path formula), and a mapping of loop heads to loop counters (this is an
abstract state of LB).

For each value of the loop bound k as determined by the initial and maximal values and
the increment function, the algorithm performs the checks for base case, forward condi-
tion, and step case. For the base case (lines 6–11), which is identical to bounded model
checking, we set the bound of the Loop-Bound CPA to k and use the CPA++ algorithm
(Algorithm 2) to unroll the program with an abstract state eINIT at the initial program loca-
tion as initial abstract state and the precision πINIT as initial precision (the Location CPA
has an empty precision, the Predicate CPA has a precision that maps all program loca-
tions to an empty set of predicates, and the Loop-Bound CPA has a precision that consists
of the single constant value k). Then we create a disjunction of the path formulas of all
resulting abstract states at the error location. Because of the configuration of the Predi-
cate CPA and the Loop-Bound CPA, this formula represents all paths from lINIT to lERR that
visit the loop body at most k times. If this formula is feasible, lERR is reachable and
the algorithm terminates.

For the forward condition (lines 12–14), we check in a similar manner whether the loop-
head location lLH is reachable at the start of the k + 1st loop iteration. If this is not the case,
this implies that the error location is also not reachable in the k + 1st loop iteration (or later
on), and thus the program is safe and the algorithm terminates.

For the inductive-step case (lines 15–23), we again use the CPA++ algorithm to unroll the
program, though this time with a loop bound of k + 1 and an abstract state at the loop head

123

318 D. Beyer et al.

Algorithm 3 Iterative-Deepening k-Induction with Invariants (adapted from [13])
Input:

the initial value kini t ≥ 1 for the bound k,
an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n for increasing the bound k,
a composite CPA D with the Location CPA L, the Predicate CPA P, and the Loop-Bound CPA LB as
components,
for which E denotes the set of composite abstract states and Π the set of precisions

Output: false if lERR is reachable, true otherwise
Variables: the current loop bound k ∈ N,

two abstract states eINIT ∈ E and eLH ∈ E and a precision πINIT ∈ Π ,
two sets reached and waitlist of elements of E × Π , and
a function abort : E → B

1: k := kini t
2: eINIT := (lINIT , (true, lINIT , true), {lLH �→ −1}) // Create abstract state at lINIT .
3: eLH := (lLH , (true, lLH , true), {lLH �→ 0}) // Create abstract state at loop head lLH .
4: abortnever := {· �→ false} // abortnever always returns false.
5: while k ≤ kmax do
6: πINIT := {(∅, {· �→ ∅}, k)} // Create initial precision.
7: reached := waitlist := {(eINIT , πINIT)}
8: (reached,waitlist) := CPA++(D, reached,waitlist, abortnever)
9: base_case := ∨ {

ϕ | (

(lERR, (·, ·, ϕ), ·), ·) ∈ reached
}

10: if sat(base_case) then
11: return false
12: forward_condition := ∨ {

ϕ | (

(lLH , (·, ·, ϕ), i), ·) ∈ reached ∧ i(lLH) = k
}

13: if ¬ sat(forward_condition) then
14: return true
15: πINIT := {(∅, {· �→ ∅}, k + 1)} // Initial precision with loop bound k + 1.
16: reached := waitlist := {(eLH , πINIT)}
17: reached := CPA++(D, reached,waitlist, abortnever)
18: step_case := ∨ {

ϕ | (

(lERR, (·, ·, ϕ), i), ·) ∈ reached ∧ i(lLH) = k
}

19: repeat
20: Inv := get_currently_known_invariant()
21: if ¬ sat(Inv ∧ step_case) then
22: return true
23: until Inv = get_currently_known_invariant()
24: k := inc(k)
25: return unknown

as initial abstract state. For the following satisfiability check, we use the disjunction of the
path formulas of all abstract states at the error location and with a loop-counter value of k
(i.e., in the k + 1st loop iteration). Note that because we assume that the loop body cannot
be reached from the error location lERR, this formula represents all paths with k safe loop
iterations and a specification violation in the k + 1st iteration. Additionally, we strengthen
the hypothesis of the inductive-step case with the currently known loop invariant that is pro-
duced by the concurrently running (external) invariant generator. The invariant obtained from
the invariant generator is an SMT formula that is guaranteed to hold at the loop-head loca-
tion. If the invariant generator produces a stronger loop invariant while the inductive-step
case is running, we immediately try again with the new invariant (this can be done effi-
ciently using an incremental SMT solver). If the inductive-step case succeeds, the program
is safe and the algorithm terminates. Otherwise, we repeat with a larger value of k, which is
called iterative deepening.

123

A Unifying View on SMT-Based Software Verification 319

e0: (l4, (true, l4, true), {l4 �→ 0})

e1: (l11, (true, l4, ¬(x0 < 2)), {l4 �→ 0})

e2: (l12, (true, l4, ¬(x0 < 2)), {l4 �→ 0})

e3: (l5, (true, l4, x0 < 2), {l4 �→ 0})

e4: (l6, (true, l4, x0 < 2 ∧ x1 = x0 + 1), {l4 �→ 0})

e5: (l7, (true, l4, ∧x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1), {l4 �→ 0})

e6: (l8, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 �→ 0})

e7: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(x1 = y1)), {l4 �→ 0})

e8: (l4, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1))), {l4 �→ 1})

e9: (l11, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 �→ 1})

e10: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ ¬(x1 < 2)), {l4 �→ 1})

e11: (l5, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2), {l4 �→ 1})

e12: (l6, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1), {l4 �→ 1})

e13: (l7, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1), {l4 �→ 1})

e14: (l8, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 �→ 1})

e15: (l12, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(x2 = y2)), {l4 �→ 1})

e16: (l4, (true, l4, x0 < 2 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ¬(¬(x1 = y1)) ∧ x < 2 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ ¬(¬(x2 = y2))), {l4 �→ 2})

Fig. 6 ARG for the inductive-step case of k-induction applied to the example of Fig. 2

Example 7 (k-Induction) If we apply k-induction with k = 1 to the program of Fig. 2,
the first phase, which is equivalent to BMC, yields the same ARG as in Fig. 5. Figure 6
shows the ARG of the second phase, which is constructed by unrolling the CFA starting
at loop head lLH = l4 and using loop bound k + 1 = 2. The path formula of the abstract
state e14 at the error location lERR = l8, which is in the k + 1st loop iteration, is unsatis-
fiable (specifically, the part ¬(¬(x1 = y1)) ∧ x2 = x1 + 1∧ y2 = y1 + 1∧ ¬(x2 = y2)
is contradictory). This means that after going through one loop iteration without reach-
ing l8, we can also not reach l8 in the following loop iteration. In combination with the
base case (BMC) from the first phase this proves that the program is safe. Note that this
inductive proof is strong enough to prove safety even if we replace the loop condition in
line 4 of the example program by a nondeterministic value.

Also note that in this example, no strengthening with auxiliary invariants is required,
because the verified property (unreachability of the error location l8) itself is inductive.
Since this is not the case in general, we usually first conjoin auxiliary invariants to
the path formula of the abstract state before checking satisfiability. In this example,
an auxiliary-invariant generator based on an interval abstract domain might yield the
inductive invariant x >= 0∧x <= 2, whichwewould instantiate as x1 >= 0∧x1 <= 2
for the loop head state of the first iteration.

123

320 D. Beyer et al.

Algorithm 4 CEGAR(D, eINIT , πINIT) for CPAs
Input: a composite CPA D that is composed of the Location CPA L, the ARG CPA A, and possibly other

CPAs,
for which E denotes the set of composite abstract states and Π the set of precisions,
with additional operators fcover and refine,
and an initial abstract state eINIT = (lINIT , · · ·) ∈ E with initial precision πINIT ∈ Π

Output: false if lERR is reachable, true otherwise
Variables: two sets reached and waitlist of elements of E × Π and

a function abort : E → B

1: reached := {(eINIT , πINIT)}
2: waitlist := {(eINIT , πINIT)}
3: abortERR := {(l, · · ·) �→ (l = lERR)} // abortERR returns true for abstract error states.
4: loop
5: (reached,waitlist) := CPA++(D, reached,waitlist, abortERR)

6: if ∃((lERR, · · ·), ·) ∈ reached then
7: (reached,waitlist) := refine(reached,waitlist)
8: if ∃((lERR, · · ·), ·) ∈ reached then
9: return false // refine has detected a feasible error path.
10: else
11: return true

4.3 Lazy Predicate Abstraction

Predicate abstraction with counterexample-guided abstraction refinement (CEGAR) does
not use a loop bound, but attempts to converge by determining whether new abstract states
are covered by any existing abstract state. In order to make the coverage checks efficient,
the abstraction formula of an abstract state overapproximates the reachable concrete states
using a boolean combination of predicates over program variables from a given mapping
from program locations to sets of predicates (the precision π). This abstraction is com-
puted by an SMT solver and the result (the abstraction formula ψ) is stored as a BDD,
which can be efficiently checked for entailment. With ABE, the abstraction computations
and coverage checks are done only at block ends. For the CPA++ algorithm to terminate
it has to be ensured that all ABE blocks do not contain potentially infinite paths, e.g., by
using blkl to let blocks end at loop-head locations. For predicate abstraction we do not
use forced coverings.

Furthermore, we wrap our CPA++ algorithm (Algorithm 2) inside Algorithm 4, which
implements CEGAR by alternately calling the CPA++ algorithm in order to expand the
abstract model and a refinement operator in order to refine the precision of the analy-
sis. We give it a composite CPA that consists of the Location CPA L, the ARG CPA A

(necessary for constructing abstract paths during refinement), and the Predicate CPA P.
Using CEGAR and the predicate-refinement strategy of the refinement operator refineP, it
is often possible to find a suitable precision automatically, starting with an empty initial
precision. First, CEGAR uses the CPA++ algorithm in order to create the abstract model of
the program. If the analysis encounters an abstract state at error location lERR, we pause the
state-space exploration done by CPA++ algorithm (via the function abortERR) and start the
refinement using refineP. As described in Sect. 3.2, this operator reconstructs the concrete
program path leading to the abstract state at lERR and checks the path for feasibility using
an SMT solver. If the concrete error path is feasible, we terminate the analysis. Otherwise,
the precision is refined (by employing an SMT solver to compute Craig interpolants [38]
for the locations on the error path), and the CPA++ algorithm is restarted with adjusted
sets reached and waitlist. Due to the refined precision, it is guaranteed that the previously

123

A Unifying View on SMT-Based Software Verification 321

e0: (l2, (true, l2, true))

e1: (l3, (true, l2, x0 = 0))

e2: (l4, (x = y, l4, true))

e3: (l11, (x = y, l4, ¬(x0 < 2)))

e4: (l12, (x = y, l4, ¬(x0 < 2)))

e5: (l5, (x = y, l4, x0 < 2))

e6: (l6, (x = y, l4, x0 < 2 x1 = x0 + 1))

e7: (l7, (x = y, l4, x0 <
<

< <

<
2 x1 = x0 + 1 y1 = y0 + 1))

e8: (l4, (x = y, l4, true))

covered by

Fig. 7 ARG for predicate abstraction applied to the example of Fig. 2; highlighted nodes are abstraction states

identified infeasible error paths are not encountered again. This process is iterated until
either a feasible concrete error path is found, or the CPA++ algorithm terminates proving
the program safe.

Example 8 (Lazy Predicate Abstraction) If we apply predicate abstraction to the exam-
ple in Fig. 2 using a precision π with π(l4) = {x = y}, π(l8) = {false}, and π(l) = {}
for all other l ∈ L and defining blocks to end at the loop head l4 and the error location l8
(with blkl), we obtain the ARG depicted in Fig. 7: The first block consists of the abstract
states e0 at location l2 and e1 at location l3. If the analysis hits location l4, which is a loop
head, the path formula x0 = 0∧ y0 = 0 is abstracted using the set of predicates mapped
to this location by π . The set of predicates for the location l4 contains only the predi-
cate x = y, which is implied by the path formula and becomes the abstraction formula of
the new abstraction state e2, while the path formula of e2 is reset to true. From that point
onward, there are two possible paths: one directly to the end of the program if x is greater
than or equal to 2, and another one into the loop if x is less than 2. The path avoiding
the loop (abstract states e3 and e4) is trivially safe, because from l11 or l12 there is no
control-flow path back to the error location. The path through the loop (abstract states e5,
e6, and e7) increments both variables before encountering the assertion. At the error
location l8 the block operator forces an abstraction computation, which in this case is
equivalent to a satisfiability check because the precision contains only the predicate false
for location l8. Because the combination of the abstraction formula x = y that encodes
the reachability of the block entry and the current path formula is unsatisfiable, the error
location is not reachable at this point. Thus, the only successor of e7 is at the loop head l4,
which causes the previous block to end. The abstraction computation yields again the
abstraction formula x = y at l4 (cf. Example 2), which is already covered by the abstract
state e2. Therefore, unrolling the CFA into the ARG completed without encountering the
error location lERR = l8. The algorithm thus concludes that the program is safe.

123

322 D. Beyer et al.

4.4 Lazy Abstraction with Interpolants (IMPACT)

Lazy abstraction with interpolants [61], more commonly known as the Impact algorithm due
to its first implementation in the tool Impact, was originally presented as an algorithm that
repeatedly executes the steps Expand (discovery of new abstract states),Refine (strengthen-
ing of abstract states using interpolation), and Cover (detecting coverage between abstract
states). Later on it was reformulated in a unified framework together with predicate abstrac-
tion and enhanced with ABE [25]. Our description here is based on this reformulation, which
was shown to behave similarly to the original algorithm. Like for predicate abstraction, for
Impact we use CEGAR (Algorithm 4), the CPA++ algorithm, and the Predicate CPA, how-
ever, we configure the latter differently. Compared to predicate abstraction, π stays always
empty because the Impact refinement strategy of refineP is used. Thus, the abstraction
computation at block ends always trivially returns true. The Impact refinement strategy,
however, makes use of the fact that interpolants are guaranteed to hold at their specific loca-
tion in the error path and directly strengthens the abstraction formulas of abstract states
along the error path with the respective interpolants. The abstract error state is removed
during refinement and all coverage relations involving the strengthened abstract states are
rechecked after refinement. Furthermore, the abstraction formulas ψ are stored syntactically
and coverage is checked using an SMT solver, instead of BDD entailment. If desired, we
can configure fcoverP to perform interpolation-based forced covering as an optimization (cf.
Sect. 3.3). Impact avoids the costly abstraction computations and rediscovery of abstract
states, at the expense of more costly coverage checks.

Example 9 (Impact) If we apply the Impact approach to the example program from
Fig. 2, define blocks to end at the loop head l4 and assume that both interpolations that are
required during the analysis yield the interpolant x = y at location l4, we obtain an ARG as
depicted in Fig. 8: Starting with the initialization of the variables, we first obtain the abstract
states e0 and e1; at e2, however, we reset the path formula to true, because l4 is a block entry.
Note that at this point, the abstraction formula for this block is still true. Unwinding the first
loop iteration, we first obtain abstract states for incrementing the variables and then hit the
error location lERR = l8 with abstract state e8. Thus we start a refinement using refineP with
the Impact refinement strategy. An SMT check on the reconstructed concrete error path
shows that the path is infeasible, therefore, we perform an interpolation. For the example we
assume that interpolation provides the interpolant x = y, so we strengthen the abstraction
formula of e2 with this interpolant and strengthen the abstraction formula of e8 with false
(cf. Example 4). Because e8 now represents an empty set of concrete states, we remove it
from the ARG. Then, we continue the expansion of e7 towards l4 with abstract state e9.
Note that at this point, the abstraction formula for e9 is still true, thus e9 is not covered by e2
with x = y. Also, e2 cannot be covered by e9, because e2 is an ancestor of e9. We unwind
the loop for another iteration and again hit the error location l8 with abstract state e13. Once
again, the concrete path formula for this abstract state is infeasible, so we interpolate. For
the example we assume that interpolation provides again the interpolant x = y, and use it
to strengthen the abstraction formula of e9. The abstract error state e13 is removed from the
ARG after its abstraction formula is strengthened to false. Now, a coverage check reveals
that e9 is covered by e2, because neither e9 nor any of its ancestors is covered yet, both
belong to the same location l4, x = y implies x = y, e9 is not an ancestor of e2, and e2
was created before e9. Because e9 is now covered, we need not continue expanding any of
its (transitive) successors, and the algorithm terminates without finding any feasible error
paths, thus proving safety.

123

A Unifying View on SMT-Based Software Verification 323

e0: (l2, (true, l2, true))

e1: (l3, (true, l2, x0 = 0))

e2: (l4, (true x = y, l4, true))

e3: (l11, (true, l4, ¬(x0 < 2)))

e4: (l12, (true, l4, ¬(x0 < 2)))

e5: (l5, (true, l4, x0 < 2))

e6: (l8, (true, l4, x0 < 2 x1 = x0 + 1))

e7: (l7, (true, l4, x0 < 2 x1 = x0 + 1 y1 = y0 + 1))

e8: (l8, (true false, l8, true))

e9: (l4, (true x = y, l4, true))

e10: (l5, (true, l4, x1 < 2))

e11: (l6, (true, l4, x1 < 2 x2 = x1 + 1))

e12: (l7, (true, l4, x1 < 2 x2 = x1 + 1 y2 = y1 + 1))

e13: (l8, (true false, l8, true))

covered by

<

<

<

<<

<

Fig. 8 Final ARG for applying the Impact approach to the example of Fig. 2; highlighted nodes
are abstraction states

4.5 Summary

We showed how to express four approaches to software verification with our framework for
predicate-based analyses and illustrated how they work on the example from Fig. 2. Table 1
summarizes the choices that need to be made for each of the approaches. While BMC is
limited in its capacity of proving correctness, it is also the most straightforward of the four
approaches, because k-induction requires an auxiliary-invariant generator to be applicable
in practice, and predicate abstraction and Impact require interpolation techniques. While
the invariant generator and the interpolation engine are usually treated as black box in the
description of these approaches, the efficiency and effectiveness of the techniques depends
on the quality of these modules.

123

324 D. Beyer et al.

Table 1 Configuration of the predicate CPA P for the four approaches

Abstraction-formula
representation

blk Refinement
strategy

fcoverP

BMC SMT blknever None fcoverid

k-Induction SMT blknever None fcoverid

Predicate abstraction BDD e.g. blkl Predicate refinement fcoverid

Impact SMT e.g. blkl Impact refinement e.g. fcoverImpact

4.5.1 Further Algorithms

There are other approaches for software verification besides the four that we unify in this
work, and of course, the best features of all approaches can be combined into new, “hybrid”
methods, such as implemented in CPAchecker [71], SeaHorn [48], and Ufo [3]. The
focus of this article is not to find the best possible combination, but to study the approaches
in isolation. In the following, we briefly discuss the most important SMT-based approaches,
ordered roughly accordingly to how similar they are to the approaches that we have
discussed so far.

TheUfo algorithm [2] combines the Impact algorithmwith predicate abstraction.Ufo is
similar to Impact, but implements a choice between performing predicate-abstraction com-
putation when creating fresh abstract states and initializing them with true as Impact does.
Refinement is done using interpolation, and the interpolants can be used to either strengthen
the abstract states (pure Impact behavior), or to update the set of predicates (pure predicate-
abstraction behavior), or do both. This approach can be seen as an instantiation of our
frameworkwith a refinement operator that uses both the Impact- and the predicate-refinement
strategies (cf. Sect. 3.2).

Symbolic execution [58] follows each path in the program separately and interprets its
operations; the abstract states track explicit and symbolic values of program variables in a
symbolic store as well as constraints over the symbolic values. If a variable is assigned a
nondeterministic value, a fresh symbolic value is stored; if an explicit value can be determined
by the analysis, then the explicit value is stored. Constraints that are encountered along a
path are tracked and checked for satisfiability, using the symbolic store as interpretation,
whenever the feasibility of the path needs to be determined (e.g., if an error location is
reached). The framework presented in this work can be configured as an analysis that behaves
similarly to symbolic execution (just without symbolic store) by using the CPA algorithm
with the Predicate CPA configured to use blknever and mergesep instead of mergeP. The
operator blknever has the effect of disabling abstraction computations and thus accumulating
the semantics of all program operations of a path in the path formula of abstract states
during traversal (as for BMC). The operatormergesep has the effect of preventing all merges
between abstract states and thus keeping all paths separate, forming a reachability tree. Note
that differently from symbolic execution this configuration tracks all values syntactically.

Slicing abstractions [30,43] (a.k.a. “state splitting”) starts with an abstract-reachability
graph in which all abstract states are labeled with true. The algorithm iteratively searches
for an infeasible error path in this graph and computes interpolants for the respective path.
The strategy for refining the abstract model consists of duplicating each abstract state for
which an interpolant was found (including its edges) and conjoining the interpolant to one
of the resulting abstract states and the negated interpolant to the other one (“state splitting”).

123

A Unifying View on SMT-Based Software Verification 325

Then all edges of both resulting states are checked for feasibility. This always results in
enough edges being removed such that the current infeasible error path no longer exists in
the abstract-reachability graph. This is repeated (CEGAR) until either no infeasible error path
exists anymore, or a feasible error path is found. The approach of splitting abstract states has
also been extended to a combination of predicate abstraction and explicit-value analysis [49],
similar to the combination of lazy predicate abstraction and explicit-value analysis [22].

Trace abstraction [50] is a CEGAR-based approach inwhich the iteratively refined abstract
model of the program is not a set of abstract states, but instead an automaton that represents
an overapproximation of the feasible paths of the program. Every time a spurious counterex-
ample is detected, a trace automaton that represents a set of infeasible paths including the
current counterexample is created using interpolation, and this trace automaton is subtracted
from the current abstract model.

Software proof-based abstraction with counterexample-based refinement (SPACER) [59]
is an approach that combines CEGAR with its dual, proof-based abstraction (PBA) [62].
While CEGARmaintains an overapproximation of the program and refines it using infeasible
error paths, PBAmaintains an underapproximation and refines it if it finds a safety proof that
holds only for the underapproximation but not for the original system. SPACER follows the
PBA approach but uses an abstraction of the underapproximation to allow handling infinite-
state systems and refines this abstraction using CEGAR.

Model checkingmodulo theories (MCMT) [45,46] is an approach that focuses onverifying
infinite-state systems that use arrays. It is based on a backwards-reachability analysis and
SMT solving for theories that fulfill certain conditions. MCMT has been combined with
CEGAR and interpolation to define an analysis that can be described as a backwards variant
of Impact and applied to software model checking [4]. This approach uses interpolation to
compute quantifier-free interpolants for a restricted class of formulas with arrays and can
prove universally quantified properties over arrays automatically.

IC3 [28],which is also known as property-directed reachability (PDR) [42], is an algorithm
for model checking finite-state systems. It aims at producing an inductive invariant that is
strong enough to prove safety by incrementally learning clauses that are inductive with
regard to the previously learned clauses. Such clauses are derived by generalizing from
counterexamples to induction proofs. PDR was originally designed for boolean transition
systems and based on SAT solving. It has been generalized fromboolean systems to SMT [52]
and applied to software in various ways [27,32,33,54], which we discuss in the following.
If PDR is combined with an explicit (instead of symbolic) tracking of the program counter,
this lets the algorithm produce an abstract-reachability tree [32]. In fact, because the sets
of clauses that PDR learns fulfill the properties of interpolants, this tree-based PDR can
even be seen as a version of Impact, just with a different way of producing interpolants. A
hybrid approach that uses both a regular interpolation engine as well as PDR for producing
interpolants is also possible [32]. It would be an interesting extension of our Predicate CPA
to adopt the clause-learning strategy of PDR as an alternative to using interpolation during
refinement (cf. Sect. 3.2). Another approach for software verification using PDR is to define
a boolean abstract model of the program using predicate abstraction and use an almost
unchanged PDR algorithm for verifying the abstract model [33]. The abstraction is refined
using typical predicate-discovery strategies (e.g., interpolation) whenever an infeasible error
path is found. CTIGAR [27] is an approach for applying PDR to software that does not rely on
CEGAR (i.e., using error paths for refinement), but uses counterexamples to induction (CTI)
for abstraction refinement. CTIGAR computes abstract CTIs from the concrete CTIs of PDR
by using predicate abstraction and refines the abstraction using interpolation if it finds a clause
that is inductive with regard to the previously learned clauses, but its abstract version is not.

123

326 D. Beyer et al.

PDR can also be extended from standard induction to property-directed k-induction [54].
This allows it to more easily verify programs for which useful 1-inductive invariants are
cumbersome and difficult to find, while more concise k-inductive invariants exist.

Loop invariants that are strong enough to verify program safety can also be computed via
abduction [40]. Similar to the PDR-based approaches, a candidate invariant is strengthened
until it becomes inductive. However, while PDR starts from facts that are known to hold,
the abductive approach starts from the conjecture it wants to prove and asks an abduction
engine to generate candidate strengthenings that would allow the conjecture to hold. Then
it needs to check whether one of the candidates holds, which may need further recursive
strengthenings with backtracking. As abduction engine, it is possible to use for example
quantifier elimination in Presburger arithmetic.

5 Evaluation

We evaluate BMC, k-induction, predicate abstraction, and Impact on a large set of verifica-
tion tasks and compare the approaches.

5.1 Benchmark Set

As benchmark set we use the verification tasks from the 2017 Competition on Software Ver-
ification (SV-COMP’17) [10]. We used only verification tasks where the property to verify
is the reachability of a program location (excluding the properties for memory safety, over-
flows, and termination, which are not in our scope). From the remaining set of verification
tasks, we excluded the categories ReachSafety-Arrays, ReachSafety-Floats, ReachSafety-
Recursive, and ConcurrencySafety, each of which is not supported by at least one of our
implementations of the approaches. The resulting set of categories consists of a total of 5287
verification tasks from the subcategory DeviceDriversLinux64_ReachSafety of the category
SoftwareSystems and from the following subcategories of the category ReachSafety: Bitvec-
tors, ControlFlow, ECA, Floats, Heap, Loops, ProductLines, and Sequentialized. A total
of 1374 tasks in the benchmark set contain a known specification violation, while the rest of
the tasks is assumed to be free of violations.

5.2 Experimental Setup

Our experiments were conducted on machines with one 3.4GHz CPU (Intel Xeon E3-
1230 v5) with 8 processing units and 33GB of RAM each. The operating system was
Ubuntu 16.04 (64 bit), using Linux 4.4 and OpenJDK 1.8. Each verification task was limited
to two CPU cores, a CPU run time of 15 min, and a memory usage of 15GB. We used
the benchmarking framework BenchExec3 [23] to perform our experiments. We used ver-
sion 1.6.18-jar17 of CPAchecker, with MathSAT5 as solver for all SMT queries.
We configured CPAchecker to use the SMT theories of equality with uninterpreted func-
tions, bit vectors, and floats. For Impact and predicate abstraction, an ABE block size
needs to be chosen: we used blkl to let blocks end at loop heads. For Impact we also
activated the forced-covering optimization with fcoverImpact. For BMC we used a configu-
ration with forward-condition checking [44]. For BMC and k-induction, we used an initial
bound of k = 1 and an increment function inc(n) = n+ 1. Auxiliary invariants are provided
to k-induction using a continuously refining data-flow analysis from existing work [14] that

3 https://github.com/sosy-lab/benchexec

123

https://github.com/sosy-lab/benchexec

A Unifying View on SMT-Based Software Verification 327

uses disjunctions of intervals as its abstract domain. We configure CPAchecker to avoid
false alarms by validating the feasibility of each found error path using Cbmc 5.6. Time
results are rounded to two significant digits.

5.3 Reproducibility

All presented approaches are implemented in the open-source verification framework
CPAchecker [20], which is available under the Apache 2.0 license. All experiments are
based on publicly available benchmark verification tasks [10]. Tables with our detailed exper-
imental results are available on the supplementary web page.4

5.4 Experimental Validity

5.4.1 Internal Validity

We implemented all evaluated approaches using the same software-verification framework:
CPAchecker. This allows us to compare the actual algorithms instead of comparing different
tools with different front ends and different utilities, thus eliminating influences on the results
caused by implementation differences that are unrelated to the actual algorithms.

To ensure technical accuracy, we used the open-source benchmarking framework
BenchExec5 [23] for conducting our experiments.

5.4.2 External Validity

We perform our experiments on the largest, most diverse, and publicly available collection
of verification tasks,6 which is also used by the international competition
on software verification.

5.5 Results Overall

Table 2 shows the number of correctly solved verification tasks for each of the approaches, as
well as the time that was spent on producing these results. None of the approaches reported
incorrect proofs7 or incorrect alarms. When an algorithm exceeds its time or memory limit,
it is terminated inconclusively. Other inconclusive results occur, for example, if the imple-
mentation encounters an unsupported feature, such as recursion, or if during an SMT query,
an error occurs in the SMT solver. When comparing k-induction to the other techniques,
there is sometimes a chance that the other techniques must give up due to an unsupported
feature, while k-induction is not encountering the unsupported feature because it is waiting
for the invariant generator to generate a strong invariant. Therefore, k-induction has fewer
other inconclusive results but instead more timeouts than predicate abstraction and Impact.
The quantile plots in Fig. 9 show the accumulated number of successfully solved verification
tasks within a given amount of CPU time. A data point (x, y) of a graph means that for the
respective configuration, x is the number of correctly solved tasks with a CPU run time of
less than or equal to y seconds.

4 https://www.sosy-lab.org/research/k-ind-compare
5 https://github.com/sosy-lab/benchexec
6 https://github.com/sosy-lab/sv-benchmarks
7 For BMC, real proofs are accomplished by successful forward-condition checks, which prove that no further
unrolling is required to exhaustively explore the state space.

123

https://www.sosy-lab.org/research/k-ind-compare
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks

328 D. Beyer et al.

Table 2 Experimental results of the approaches for all 5287 verification tasks, 1374 of which contain bugs,
while the other 3913 are considered to be safe

Algorithm BMC k-Induction Predicate abstraction Impact

Correct results 1043 2600 2506 2499

Correct proofs 666 2237 2169 2143

Correct alarms 377 363 337 356

Timeouts 3365 2375 2099 2442

Out of memory 603 232 78 139

Other inconclusive 276 80 604 207

Times for correct results

Total CPU time (h) 5.7 34 28 27

Avg. CPU time (s) 20 47 40 39

Total wall time (h) 4.9 17 24 24

Avg. wall time (s) 17 24 34 34

Times for correct proofs

Total CPU time (h) 2.9 28 23 23

Avg. CPU time (s) 16 45 37 39

Total wall time (h) 2.4 14 19 20

Avg. wall time (s) 13 23 32 34

Times for correct alarms

Total CPU time (h) 2.8 6.2 5.4 4.1

Avg. CPU time (s) 27 61 57 41

Total wall time (h) 2.5 3.2 4.9 3.7

Avg. wall time (s) 24 32 52 38

0 500 1 000 1 500 2 000
1

10

100

1000

(a)
0 100 200 300 400

1

10

100

1000

(b)

BMC k -Induction
Predicate Abstraction

x-Axis: n-th fastest correct result
y-Axis: CPU Time(s)

Proofs Alarms

Fig. 9 Quantile plots for all correct proofs and alarms

123

A Unifying View on SMT-Based Software Verification 329

5.5.1 BMC

As expected, BMC produces both the fewest correct proofs and the most correct alarms, con-
firmingBMC’s reputation as a technique that iswell suited for finding bugs.Having the fewest
solved tasks, BMC also accumulates the lowest total CPU time for correct results. Its average
CPU time spent on correct results is also lower than for the other techniques: for proofs,
BMC often fails to provide a correct result while the other approaches spend a lot of time on
successfully finding a proof; for finding bugs, its straightforward approach outperforms the
abstraction techniques while k-induction unnecessarily invests time in generating auxiliary
invariants. On average, BMC spends 1.2 s on formula creation, 3.5 s on SMT-checking the
forward condition, and 7.4 s on SMT-checking the feasibility of error paths.

5.5.2 k-Induction

The slowest technique is k-induction with continuously refined invariant generation, which
is the only technique that effectively uses both available cores by running the auxiliary-
invariant generation in parallel to the k-induction procedure, thus spending significantly
more CPU time than the other techniques, while the wall time it spends is comparable
to the wall time spent by the abstraction techniques for correct proofs. Compared to BMC,
k-induction spends additional time on building the step-case formula and generating auxiliary
invariants, but can often prove safety by induction without unrolling loops. Considering that
over the whole benchmark set, k-induction generates the highest overall number of correct
results, the additional effort appears to be mostly well spent. On average, k-induction spends
1.2 s on formula creation in the base case, 2.5 s on SMT-checking the forward condition, 3.0 s
on SMT-checking the feasibility of error paths, 9.3 s on creating the step-case formula, 14 s
on SMT-checking inductivity, and 20s on generating auxiliary invariants, which shows that
the inductive-step case requires much more effort than the base case and also about 3 s more
than for invariant generation. For tasks containing actual bugs, however, this effort is wasted,
which explains why k-induction spends not only more CPU time but also significantly more
wall time on correct alarms than the other techniques.

5.5.3 Predicate Abstraction and Impact

Predicate abstraction and Impact both perform similarly for finding proofs, which matches
the observations from earlier work [25]. An interesting difference is that Impact finds more
bugs. We attribute this observation to the fact that abstraction in Impact is lazier than with
predicate abstraction, which allows Impact to explore larger parts of the state space in
a shorter amount of time than predicate abstraction, causing Impact to find bugs sooner.
For verification tasks without specification violations, however, the more eager predicate-
abstraction technique pays off, because it avoidsmanySMT-checks for determining coverage.
Although in total, both abstraction techniques have to spend similar effort, this effort is
distributed differently across the various steps: While, on average, predicate abstraction
spends more time on computing abstractions (23 s) than the Impact algorithm spends on
deriving its abstraction by interpolation (9.0 s), the latter requires the relatively expensive
forced-covering step (12 s).

123

330 D. Beyer et al.

0 500 1 000
1

10

100

1000

(a)
0 100 200 300 400

1

10

100

1000

(b)

0 100 200 300
1

10

100

1000

(c)

0 50 100
1

10

100

1000

(d)

BMC k -Induction
Predicate Abstraction

x-Axis: n-th fastest correct result
y-Axis: CPU Time(s)

DeviceDrivers: Proofs ECA: Proofs

ProductLines: Proofs ProductLines: Alarms

Fig. 10 Quantile plots for some of the categories

5.6 Results on Selected Categories

Although the plot in Fig. 9a suggests that k-induction with continuously refined invariants
outperforms the other techniques in general for finding proofs, a closer look at the results
in individual SV-COMP categories reveals that the performance of an algorithm strongly
depends on the type of verification task, but also reconfirms the observation of Fig. 9b that
BMC consistently performs well for finding bugs.

For example, on the safe tasks of the category on Linux device drivers, k-induction per-
forms worse than predicate abstraction and Impact (Fig. 10a). These device drivers are often
large in size, containing pointer arithmetic and complex data structures. The interval-based
auxiliary-invariant generator that we used for k-induction is not a good fit for this kind of
problems, and a lot of effort is wasted, while the abstraction techniques are often able to
quickly determine that many operations on pointers and complex data structures are irrele-
vant for the safety property. We did not include the plot for the correct alarms in the category

123

A Unifying View on SMT-Based Software Verification 331

on device drivers, because each of the approaches only solves about 30 tasks, i.e., there is
not enough data among the correct alarms to draw any further conclusions.

The quantile plot for the correct proofs in the category of event condition action systems
(ECA) is displayed in Fig. 10b. BMC is hardly visible in this figure, because there is only a
single task in the category that it could unroll exhaustively. Each of these tasks only consists
of a single loop, but these loops contain complex branching structures over many different
integer variables, which leads to an exponential explosion of paths, such that checking sat-
isfiability of an SMT formula representing an unwinding of such a loop is often expensive
in terms of time and memory. Also, because in many tasks of this category almost all of
the variables are in some way relevant to the reachability of the error location within this
complex branching structure, the abstraction techniques are unable to come up with useful
abstractions and perform poorly. The interval-based auxiliary-invariant generator that we use
for k-induction, however, appears to provide useful invariants for handling the complexity of
the control structures, and the state-machine-like nature of these tasks requires the consid-
eration of many different cases and their interaction across consecutive loop iterations, such
that k-induction performs much better than all other techniques in this category. We did not
include the plot for the correct alarms in this category, because the abstraction techniques
were not able to detect a single bug, and only BMC and k-induction detect one single bug
for the same task, namely Problem10_label46_false-unreach-call.c.

Figure 10c shows the quantile plot for correct proofs in the category on product lines.
In this category, as in Fig. 9a, k-induction slightly outperforms the other techniques in the
number of found proofs but it also becomes even more apparent than in other categories
how much slower than the other techniques it is (on average for correct results). Figure 10d
shows the quantile plot for correct alarms in the same category. It is interesting to observe
that Impact distinctly outperforms predicate abstraction on the tasks that require over 40 s
of CPU time, whereas in the previous plots, the differences between the two abstraction
techniques were either hardly visible or Impact performed worse than predicate abstraction.
While, as shown in Fig. 10c, both techniques report almost the same amount of correct
proofs (317 for predicate abstraction, 315 for Impact), Impact detects 130 bugs, whereas
predicate abstraction detects only 125. This seems to indicate that the state space spanned
by the different product-line features can be explored more quickly by lazy abstraction of
Impact than with the more eager predicate abstraction.

5.7 Results on Selected Verification Tasks Showing Individual Strengths

The previous discussion showed that while overall, the approaches perform rather simi-
lar (apart from BMC being inappropriate for finding proofs, which is expected), each of
them has some strengths due to which it outperforms the other approaches on certain pro-
grams. In the following, we will list some examples from various categories of SV-COMP
that were each solved by one of the approaches, but not by the others, and give a short
explanation of the reasons.

5.7.1 BMC

Only BMC finds a bug in task const_false-unreach-call1.i (23 s, Category
Loops), and only BMC proves, by exhaustively unrolling a loop, safety for the task
pals_opt-floodmax.4_true-unreach-call.ufo.BOUNDED-8.pals_true
-termination.c (310s, Category Sequentialized). Both of these tasks have in common
that they contain bounded loops. The bounded loops are a good fit for BMC and enable it

123

332 D. Beyer et al.

to prove correctness; k-induction, which in theory is at least as powerful as BMC, spends
too much time trying to generate auxiliary invariants and exceeds the CPU time limit before
solving these tasks.

5.7.2 k-Induction

k-Induction outperforms the other techniques on many of the state-machine-like tasks of
the category on event condition action systems (ECA). Only k-induction proves correctness
of the task Problem14_label00_true-unreach-call.c (14 s, Category ECA),
which, like all tasks in that category, encodes a complex state machine, i.e., a loop over
switch statements with many cases, which in turn modify the variable that is considered by
the switch statement. The loop is unbounded, such that BMC cannot exhaustively unroll it,
and the loop invariants that are required to prove correctness of the task need to consider the
different cases and their interaction across consecutive loop iterations, which is beyond the
scope of the abstraction techniques but easy for k-induction (cf. [13] for a detailed discussion
of a similar example).

5.7.3 Predicate Abstraction

Only predicate abstraction solves verification task toy_true-unreach-call_false-
termination.cil.c (65 s, Category Sequentialized). The task consists of an unbounded
loop that contains a complex branching structure over integer variables, most of which only
ever take the values 0, 1 or 2. Interpolation quickly discovers the abstraction predicates over
these variables that are required to solve the task, but in this example, predicate abstraction
profits from eagerly computing a sufficiently precise abstraction early after only 10 refine-
ments while the lazy refinement technique used by Impact exceeds the time limit after 165
refinements, and the invariant generator used by k-induction fails to find the required auxiliary
invariants before reaching the time limit.

5.7.4 Impact

Only Impact solves Problem05_label50_true-unreach-call.c (190s, Cate-
gory ECA). BMC fails on this task due to the unbounded loop, and the invariant generator
used by k-induction does not come upwith anymeaningful auxiliary invariant before exceed-
ing the time limit. Predicate abstraction exceeds the time limit after only four refinements,
and up to that point, 90% of its time is spent on eagerly computing abstractions. The lazy
abstraction performed by Impact, however, allows it to progress quickly, and the algorithm
finishes after 9 refinements.

6 Conclusion

This paper presents a comparative study of four state-of-the-art approaches for SMT-based
software verification. First, we define a configurable program analysis for the predicates
domain, which serves as the unifying core component of our comparison framework. Second,
we express each approach in our framework by a specific set of parameters and illustrate the
effect on how the state-space exploration is performed. Third, we provide the results of a
thorough experimental study on a large number of verification tasks, in order to show the effect
and performance of the different approaches, including a detailed discussion of particular

123

A Unifying View on SMT-Based Software Verification 333

verification tasks that can be solved by one approach while all others fail. In conclusion,
there is no clear winner: there are disadvantages and advantages for each approach. We hope
that our conceptual and experimental overview is useful and contributes to understanding the
difference of the approaches and the potential application areas.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Read-
ing, MA (1986)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-approximations and
back. In: Proceedings of TACAS, LNCS 7214, pp. 157–172. Springer (2012)

3. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik,M.:Ufo: A framework for abstraction- and interpolation-
based software verification. In: Proceedings of CAV, LNCS 7358, pp. 672–678. Springer (2012)

4. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension of lazy abstraction with
interpolation for programs with arrays. Form. Methods Syst. Des. 45(1), 63–109 (2014)

5. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier: technology transfer of formal
methods inside microsoft. In: Proceedings of IFM, LNCS 2999, pp. 1–20. Springer (2004)

6. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM. Commun. ACM
54(7), 68–76 (2011)

7. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs.
In: Proceedings of TACAS, LNCS 2031, pp. 268–283. Springer (2001)

8. Ball, T., Rajamani, S.K.: The Slam project: debugging system software via static analysis. In: Proceedings
of POPL, pp. 1–3. ACM (2002)

9. Beckert, B., Hähnle, R.: Reasoning and verification: state of the art and current trends. IEEE Intell. Syst.
29(1), 20–29 (2014)

10. Beyer, D.: Software verification with validation of results (report on SV-COMP 2017). In: Proceedings
of TACAS, LNCS 10206, pp. 331–349. Springer (2017)

11. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software model checking via large-
block encoding. In: Proceedings of FMCAD, pp. 25–32. IEEE (2009)

12. Beyer, D., Dangl, M.: SMT-based software model checking: an experimental comparison of four algo-
rithms. In: Proceedings of VSTTE, LNCS 9971, pp. 181–198. Springer (2016)

13. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In: Pro-
ceedings of CAV, LNCS 9206, pp. 622–640. Springer (2015)

14. Beyer, D., Dangl,M.,Wendler, P.: Combining k-inductionwith continuously-refined invariants. Technical
Report MIP-1503, University of Passau (January 2015). arXiv:1502.00096

15. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast. Int. J. Softw.
Tools Technol. Transf. 9(5–6), 505–525 (2007)

16. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for combined theories.
In: Proceedings of VMCAI, LNCS 4349, pp. 378–394. Springer (2007)

17. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Proceedings of PLDI,
pp. 300–309. ACM (2007)

18. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing the conver-
gence of model checking and program analysis. In: Proceedings of CAV, LNCS 4590, pp. 504–518.
Springer (2007)

19. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjustment. In:
Proceedings of ASE, pp. 29–38. IEEE (2008)

20. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In: Proceedings
of CAV, LNCS 6806, pp. 184–190. Springer (2011)

21. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encoding. In: Pro-
ceedings of FMCAD, pp. 189–197. FMCAD (2010)

22. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and interpolation. In:
Proceedings of FASE, LNCS 7793, pp. 146–162. Springer (2013)

23. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Proceedings of SPIN,
LNCS 9232, pp. 160–178. Springer (2015)

24. Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proceedings of ISoLA, LNCS 7610, pp. 1–6.
Springer (2012)

123

http://arxiv.org/abs/1502.00096

334 D. Beyer et al.

25. Beyer, D., Wendler, P.: Algorithms for software model checking: predicate abstraction vs. Impact. In:
Proceedings of FMCAD, pp. 106–113. FMCAD (2012)

26. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Proceedings
of TACAS, LNCS 1579, pp. 193–207. Springer (1999)

27. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-guided abstraction-
refinement (CTIGAR). In: Proceedings of CAV, LNCS 8559, pp. 831–848. Springer (2014)

28. Bradley, A.R.: SAT-based model checking without unrolling. In: Proceedings of VMCAI, LNCS 6538,
pp. 70–87. Springer (2011)

29. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation by k-invariants and
k-induction. In: Proceedings of SAS, LNCS 9291, pp. 145–161. Springer (2015)

30. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fundam. Inform. 89(4),
369–392 (2008)

31. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8),
677–691 (1986)

32. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Proceedings of CAV, LNCS 7358,
pp. 277–293. Springer (2012)

33. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate abstraction.
In: Proceedings of TACAS, LNCS 8413, pp. 46–61. Springer (2014)

34. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), 752–794 (2003)

35. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proceedings of TACAS,
LNCS 2988, pp. 168–176. Springer (2004)

36. Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint
solving. In: Proceedings of CAV, LNCS 2725, pp. 420–432. Springer (2003)

37. Cordeiro, L.C., Morse, J., Nicole, D., Fischer, B.: Context-bounded model checking with Esbmc 1.17
(competition contribution). In: Proceedings of TACAS, LNCS 7214, pp. 534–537. Springer (2012)

38. Craig,W.: Linear reasoning. A new form of theHerbrand–Gentzen theorem. J. Symb. Log. 22(3), 250–268
(1957)

39. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single
assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490
(1991)

40. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference. In:
Proceedings of OOPSLA, pp. 443–456. ACM (2013)

41. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using k-induction. In: Pro-
ceedings of SAS, LNCS 6887, pp. 351–368. Springer (2011)

42. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reachability. In:
Proceedings of FMCAD, pp. 125–134. FMCAD Inc. (2011)

43. Ermis, E., Hoenicke, J., Podelski, A.: Splitting via interpolants. In: Proceedings of VMCAI, LNCS 7148,
pp. 186–201. Springer (2012)

44. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model checking of C programs
via k-induction. Int. J. Softw. Tools Technol. Transf. 19(1), 97–114 (2017)

45. Ghilardi, S., Ranise, S.: Goal-directed invariant synthesis for model checking modulo theories. In: Pro-
ceedings of TABLEAUX, LNCS 5607, pp. 173–188. Springer (2009)

46. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT solving: termination and
invariant synthesis. Log. Methods Comput. Sci. 6(4) (2010)

47. Graf, S., Saïdi, H.: Construction of abstract state graphs with Pvs. In: Proceedings of CAV, LNCS 1254,
pp. 72–83. Springer (1997)

48. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C programs (competition
contribution). In: Proceedings of TACAS, LNCS 9035, pp. 447–450. Springer (2015)

49. Hajdu, Á., Tóth, T., Vörös, A., Majzik, I.: A configurable CEGAR framework with interpolation-based
refinements. In: Proceedings of FORTE, LNCS 9688, pp. 158–174. Springer (2016)

50. Heizmann,M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Proceedings of SAS, LNCS
5673, pp. 69–85. Springer (2009)

51. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of POPL,
pp. 58–70. ACM (2002)

52. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Proceedings of SAT, LNCS 7317,
pp. 157–171. Springer (2012)

53. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4), 21:1–21:54 (2009)
54. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Proceedings of FMCAD, pp. 85–92. IEEE

(2016)

123

A Unifying View on SMT-Based Software Verification 335

55. Kahsai, T., Tinelli, C.:PKind: a parallel k-induction basedmodel checker. In: Proceedings of International
Workshop on Parallel and Distributed Methods in Verification, EPTCS 72, pp. 55–62 (2011)

56. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux driver verification
process. In: Proceedings of Ershov Memorial Conference, LNCS 5947, pp. 165–176. Springer (2009)

57. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of POPL, pp. 194–206.
ACM (1973)

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
59. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in SMT-based unbounded

software model checking. In: Proceedings of CAV, LNCS 8044, pp. 846–862. Springer (2013)
60. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proceedings of CAV, LNCS 2725,

pp. 1–13. Springer (2003)
61. McMillan, K.L.: Lazy abstraction with interpolants. In: Proceedings of CAV, LNCS 4144, pp. 123–136.

Springer (2006)
62. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Proceedings of TACAS,

LNCS 2619, pp. 2–17. Springer (2003)
63. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Berlin (1999)
64. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from verifier implementations.

In: Proceedings of CAV, LNCS 8559, pp. 106–113. Springer (2014)
65. Rocha, H., Ismail, H.I., Cordeiro, L.C., Barreto, R.S.: Model checking embedded C software using

k-induction and invariants. In: Proceedings of SBESC, pp. 90–95. IEEE (2015)
66. Schrammel, P., Kroening, D.: 2LS for program analysis (competition contribution). In: Proceedings of

TACAS, LNCS 9636, pp. 905–907. Springer (2016)
67. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state spaces. Electron. Notes

Theor. Comput. Sci. 149(1), 79–96 (2006)
68. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In:

Proceedings of FMCAD, LNCS 1954, pp. 127–144. Springer (2000)
69. Sinz, C., Merz, F., Falke, S.: Llbmc: A bounded model checker for Llvm’s intermediate representation

(competition contribution). In: Proceedings of TACAS, LNCS 7214, pp. 542–544. Springer (2012)
70. Wahl, T.: The k-induction principle. Available at http://www.ccs.neu.edu/home/wahl/Publications/

k-induction.pdf (2013)
71. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis and predicate analysis

(competition contribution). In: Proceedings of TACAS, LNCS 7795, pp. 613–615. Springer (2013)

123

http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

	A Unifying View on SMT-Based Software Verification
	Abstract
	1 Introduction
	1.1 Bounded Model Checking
	1.2 Unbounded without Abstraction1
	1.3 Unbounded with Abstraction
	1.4 Structure

	2 Background
	2.1 Program Representation
	2.2 Configurable Program Analysis
	2.2.1 CPA Algorithm
	2.2.2 Composite CPA
	2.2.3 Basic CPAs

	2.3 Counterexample-Guided Abstraction Refinement (CEGAR)

	3 Predicate CPA
	3.1 Abstract Domain, Precisions, and CPA Operators
	3.1.1 Abstract States
	3.1.2 Precisions
	3.1.3 Transfer Relation
	3.1.4 Merge Operator
	3.1.5 Stop Operator
	3.1.6 Precision-Adjustment Operator

	3.2 Refinement
	3.2.1 Abstract-Counterexample Construction
	3.2.2 Feasibility Check
	3.2.3 Interpolation
	3.2.4 Refinement Strategies

	3.3 Forced Covering
	3.4 An Extended CPA Algorithm

	4 Unifying SMT-Based Approaches for Software Verification
	4.1 Bounded Model Checking
	4.2 k-Induction
	4.3 Lazy Predicate Abstraction
	4.4 Lazy Abstraction with Interpolants (Impact)
	4.5 Summary
	4.5.1 Further Algorithms

	5 Evaluation
	5.1 Benchmark Set
	5.2 Experimental Setup
	5.3 Reproducibility
	5.4 Experimental Validity
	5.4.1 Internal Validity
	5.4.2 External Validity

	5.5 Results Overall
	5.5.1 BMC
	5.5.2 k-Induction
	5.5.3 Predicate Abstraction and Impact

	5.6 Results on Selected Categories
	5.7 Results on Selected Verification Tasks Showing Individual Strengths
	5.7.1 BMC
	5.7.2 k-Induction
	5.7.3 Predicate Abstraction
	5.7.4 Impact

	6 Conclusion
	References

