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Abstract Benchmarking is a widely used method in exper-
imental computer science, in particular, for the comparative
evaluation of tools and algorithms. As a consequence, a num-
ber of questions need to be answered in order to ensure proper
benchmarking, resource measurement, and presentation of
results, all of which is essential for researchers, tool develop-
ers, and users, as well as for tool competitions. We identify a
set of requirements that are indispensable for reliable bench-
marking and resource measurement of time and memory
usage of automatic solvers, verifiers, and similar tools, and
discuss limitations of existing methods and benchmarking
tools. Fulfilling these requirements in a benchmarking frame-
work can (on Linux systems) currently only be done by
using the cgroup and namespace features of the kernel. We
developed BENCHEXEC, a ready-to-use, tool-independent,
and open-source implementation of a benchmarking frame-
work that fulfills all presented requirements, making reliable
benchmarking and resource measurement easy. Our frame-
work is able to work with a wide range of different tools,
has proven its reliability and usefulness in the International
Competition on Software Verification, and is used by several
research groups worldwide to ensure reliable benchmarking.
Finally, we present guidelines on how to present measure-
ment results in a scientifically valid and comprehensible way.
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1 Introduction

Performance evaluation is an effective and inexpensive
method for assessing research results [31], and in some com-
munities, like high-performance computing,' transactional
processing in databases, natural-language requirements pro-
cessing,3 and others, performance benchmarking is standard-
ized. Tools for automatic verification, such as solvers and
verifiers, are also evaluated using performance benchmark-
ing, i.e., measuring execution time, memory consumption,
and other performance characteristics of the tool for a large
set of input files. Benchmarking is used for comparing dif-
ferent tools of the same domain, evaluating and comparing
different features or configurations of the same tool, or find-
ing out how a single tool performs on different inputs or
during regression testing. Also competitions, like the SAT
Competition (SAT-COMP) [1], the International Satisfia-
bility Modulo Theories Competition (SMT-COMP) [13],
and the International Competition on Software Verifica-
tion (SV-COMP) [7], require exact measuring of resource
consumption for hundreds or thousands of runs for each
participating tool.

Besides measuring, also the ability to limit resource usage
(e.g., memory consumption) of a tool during benchmarking is
a hard requirement for replicable experiments. Competitions
need to accurately enforce the agreed resource limits in order
to guarantee fairness. For example, SV-COMP limits all tools
to 15 min of CPU time and 15 GB of RAM [7]. Results from
the tools are only counted if none of these limits are exceeded.

To recover from its replication crisis [14,23,26], experi-
mental computer science needs a stronger focus on

1 https://www.spec.org

2 http://www.tpc.org
3 http://nlrp.ipd kit.edu
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replicability [11,20,33]. While replicability requires several
properties to be satisfied (e.g., documentation of experimen-
tal setup, availability of data, repeatability of experiments),
this article focuses on the technical aspects of benchmark-
ing that can render the results invalid. To be able to perform
replicable performance experiments, a benchmarking infras-
tructure should guarantee that the results are obtained by
reliable and valid measurements.

An experiment is replicable if it is guaranteed that a dif-
ferent research team is able to obtain the same results later
again by rerunning the benchmarks on a machine with the
same hardware and the same software versions.* Replicable
experiments require reliable measurement. We call a mea-
surement reliable, if the measurement method ensures high
accuracy (only small systematic and random measurement
error, i.e., no bias or “volatile” effects, resp.) and sufficient
precision [19] (cf. also ISO 3534-2:2006). While measur-
ing execution time may appear trivial, a closer look reveals
that quite the contrary is the case. In many circumstances,
measuring the wall time, i.e., the elapsed time between start
and end of a tool execution, is insufficient because this does
not allow a meaningful comparison of the resource usage
of multithreaded tools and may be inadvertently influenced
by input/output operations (I/O). Measuring the CPU time is
more meaningful but also more difficult, especially if child
processes are involved. Furthermore, characteristics of the
machine architecture such as hyperthreading or nonuniform
memory access can nondeterministically affect results and
need to be considered carefully in order to obtain accurate
results. Obtaining reliable measurement values on memory
consumption is even harder, because the memory that is used
by a process may increase or decrease at any point in time.
Similarly, the limits on memory consumption must not be
exceeded ar any point in time during the execution of the
tool. Child processes again add further complications. For
replicable experiments, it is also important that the tool exe-
cutions are properly isolated. Executing the benchmarked
tool should leave the system in an unchanged state, and
parallel tool executions must not affect each other due to,
for example, mutual interference of processes from different
tool executions or contention with regard to shared hardware
resources. Another important aspect is the potentially huge
heterogeneity between different tools in a comparison: tools
are written in different programming languages, require dif-
ferent libraries, may spawn child processes, write to storage
media, or perform other I/O. All of this has to be considered in
the design of a benchmarking environment, ideally in a way
that does not exclude any tools from being benchmarked.

Unfortunately, existing benchmarking tools do not always
ensure that these issues are handled and that the results are

4 cf. ACM’s guideline:
https://www.acm.org/publications/policies/artifact-review-badging
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reliable. In order to pave the way for reliable benchmarking
in practice, a benchmarking infrastructure is necessary that
allows reliable measurement and limitation of resources and
makes it as easy as possible to obtain and present scientifi-
cally valid experimental data.

The presentation of benchmarking results can also intro-
duce errors that reduce the precision, for example due to
incorrect rounding. Furthermore, presenting a large number
of results, such as for experiments with several tool configura-
tions on many input files, in a meaningful and understandable
way can be a challenge.

1.1 Overview

We present the following solutions and insights toward reli-
able benchmarking for all scenarios that are described above:

We define a set of necessary requirements that need to be

fulfilled for reliable benchmarking (Sect. 2).

— We show that some existing methods for resource mea-
surements and limitations do not fulfill these require-
ments and lead to invalid experimental results in practice
(Sect. 3).

— We investigate the impact of benchmarking multiple tool
executions in parallel and report experimental results
on measurement errors, depending on certain hardware
characteristics (Sect. 4).

— We describe how to implement a benchmarking envi-
ronment on a Linux system which fulfills all mentioned
requirements (Sect. 5).

— We introduce the open-source implementation
BENCHEXEC, a set of ready-to-use tools that fulfill the
requirements for reliable benchmarking. These tools
were already used successfully in practice by competi-
tions and by research groups (Sect. 6).

— We identify requirements for valid presentation of exper-

imental results and give an overview of methods for

presenting benchmark results using tables and expressive

figures (Sect. 7).

Compared to our previous publication on this topic [10],
we describe how to create benchmarking containers with
Linux namespaces (Sect. 5.2) to ensure the desired isolation
of benchmark runs (Sect. 2.6); we show results for the per-
formance influence of several hardware characteristics and
present new insights on the validity of executing benchmarks
in parallel (Sect. 4); and we add the section on presentation
of benchmark results (Sect. 7).

1.2 Restrictions

In order to guarantee reliable benchmarking, we need to
introduce a few restrictions. There are important classes of


https://www.acm.org/publications/policies/artifact-review-badging
https://github.com/sosy-lab/benchexec
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benchmarks in the area of efficient algorithms for which these
restrictions are acceptable, for example automatic solvers,
verifiers, and similar tools. We only consider the benchmark-
ing of tools that adhere to the following restrictions: the tool
(1) is CPU-bound, i.e., if compared to CPU usage, input and
output operations from and to storage media are negligible,
and input and output bandwidth does not need to be limited
nor measured (this assumes the tool does not make heavy
use of temporary files); (2) executes computations only on
the CPU, i.e., does not make use of separate coprocessors
such as GPUs, (3) does not require external network com-
munication during the execution; (4) does not spread across
several machines during execution, but is limited to a single
machine; and (5) does not require user interaction.

These restrictions are acceptable for a large class of bench-
marks. Reading from storage media (1), apart from the input
file, is not expected for tools in the target domains. In case a
tool produces much output (e.g., by creating large log files),
this would primarily have a negative impact on the perfor-
mance of the tool itself and thus does not need to be restricted
by the benchmarking environment. Sometimes, I/O cannot
be avoided for communicating between several processes;
however, for performance this should be done without any
actual storage I/O anyway (e.g., using pipes). Note that RAM
disks should not be used as temporary storage on benchmark-
ing systems, because their usage would neither be counted
in memory measurements nor be restricted by the memory
limit. If a tool executes computations on coprocessors like
GPUs (2), this kind of resource consumption would also
need to be measured in order to get meaningful results. This
is out of our scope, and also more complex than measure-
ments on CPUs, because GPUs and similar coprocessors are
architecturally much more diverse than CPUs and no com-
mon hardware-independent interface exists for them, yet. Not
supporting external network communication (3) is necessary,
because allowing such communication would make it possi-
ble for a tool to offload work to remote servers [8,32], and
this would mean to exclude the offloaded work from bench-
marking. Benchmarking a distributed tool (4) is much more
complex and out of scope. However, techniques and ideas
from this paper as well as our benchmarking framework can
be used on each individual host as part of a distributed bench-
marking environment. User interaction (5) is generally not
supported for benchmarking.

While we consider a proper isolation of the executed tool
in order to prevent accidental sabotage of the measurements
or other running processes, we do not focus on security
concerns, i.e., we assume the executed tool does not mali-
ciously try to interfere with the benchmarking. We also do
not consider the task of providing the necessary execution
environment, i.e., the user has to ensure that the tool itself
and all necessary packages and libraries that are required to
execute the tool are available in the correct versions. Fur-

thermore, we assume that enough memory is installed to
hold the operating system (OS), the benchmarking environ-
ment, and the benchmarked process(es) without the need for
swapping, and that no CPU-intensive tasks are running out-
side the control of the benchmarking environment. All I/O
is assumed to be local, because network shares can have
unpredictable performance.

These are well-justified requirements, needed for reliable
operation of a benchmarking environment, and fulfilled by
setups of competitions like SV-COMP.

2 Requirements for reliable benchmarking

There exist three major difficulties that we need to con-
sider for benchmarking. The first problem is that a tool may
arbitrarily spawn child processes, and abenchmarking frame-
work needs to control this. Using child processes is common
practice. For example, verifiers might start preprocessors,
such as cpp, or solvers, like an SMT-backend, as child pro-
cesses. Some tools start several child processes, each with a
different analysis or strategy, running in parallel, while some
verifiers spawn a separate child process to analyze counterex-
amples. In general, a significant amount of the resource usage
can happen in one or many child processes that run sequen-
tially or in parallel. Even if a tool is assumed not to start child
processes, for comparability of the results with other tools it
is still favorable to use a generic benchmarking framework
that handles child processes correctly.’

The second problem occurs if the benchmarking frame-
work assigns specific hardware resources to tool runs, espe-
cially if such runs are executed in parallel and the resources
need to be divided between them. Machine architectures
can be complex and a suboptimal resource allocation can
negatively affect the performance and lead to nondetermin-
istic and thus nonreplicable results. Examples for differing
machine architectures can be seen in Appendix A and on the
supplementary web page®.

The third problem arises with ensuring the independence
of different tool executions. In most cases, benchmarks con-
sist of a large number of tool executions, each of which is
considered to be independent from the others. For accurate
results, each tool execution should be performed in isolation,
as on a dedicated machine without other tool executions, nei-
ther in parallel nor in sequential combination, for example to
avoid letting the order of tool executions influence the results.

We have identified six requirements (shown in Fig. 1) that
address these problems and need to be followed for reliable

3 Our experience from competition organization shows that developers
of complex tools are not always aware of how their system spawns child
processes and how to properly terminate them.

6 https://www.sosy-lab.org/research/benchmarking
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Respect Nonuniform Memory Access

Avoid Swapping

S
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Fig. 1 Requirements for reliable benchmarking

benchmarking. This list can also serve as a checklist not only
for researchers who use benchmarking, but also for assessing
the quality of experimental results in research reports. In the
following, we explain each requirement in more detail.

2.1 Measure and limit resources accurately
2.1.1 Measuring CPU time and wall time

The CPU time of a tool must be measured and limited
accurately, including the CPU time of all (transitive) child
processes that the tool started. The wall time (i.e., the elapsed
time between start and end of the tool execution) must be
measured without being affected by changes to the system
clock, e.g., due to daylight-savings time or due to time adjust-
ments in the background that are for example caused by
NTP services.

2.1.2 Measuring peak memory consumption

For benchmarking, we are interested in the peak resource
consumption of a process, i.e., the smallest amount of
resources with which the tool could successfully be executed
with the same result. Thus, the memory usage of a process
is defined as the peak size of all memory pages that occupy
some system resources. This means, for example, that we
should not measure and limit the size of the address space
of a process, because it may be much larger than the actual
memory usage. This might happen due to memory-mapped
files or due to allocated but unused memory pages (which
do not actually take up resources, because the Linux kernel
lazily allocates physical memory for a process only when a
virtual memory page is first written to, not when it is allo-
cated). The size of the heap can also not be used as memory
measure because it does not include the stack, and the so-
called resident set of a process (the memory that is currently
kept in RAM) cannot be used because it does not include
pages that are in use but have been swapped out.

If a tool spawns several processes, these can use shared
memory, such that the total memory usage of a group of
processes is less than the sum of their individual mem-
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ory usages. Shared memory occupies system resources
only once and thus needs to be counted only once by the
benchmarking framework.

Explicitly setting a limit for memory usage is important
and should always be done, because otherwise the amount of
memory available to the tool is the amount of free memory
in the system, which varies over time and depends on lots of
external factors, preventing repeatable results.

2.2 Terminate processes reliably

If aresource limit is violated, it is necessary to reliably termi-
nate the tool including all of its child processes. Even if the
tool terminates itself, the benchmarking environment needs
to ensure that all child processes are also terminated. Other-
wise a child process could keep running and occupy CPU and
memory resources, which might influence later benchmarks
on the same machine.

2.3 Assign cores deliberately

Special care is necessary for the selection of CPU cores that
are assigned to one tool execution. For the scheduler of the
OS, a core is a processing unit that allows execution of one
thread independently of what happens on a different core.
However, on the hardware level cores are usually not fully
independent because of shared hardware resources. In this
case, the performance of a core and thus the CPU-time and
wall-time measurements of a tool execution are influenced
by the actions of threads running on other cores, and the
performance impact depends not only on the characteristics
of the machine’s hardware, but also on the type of operations
performed by all these threads, and on the timing of their
operations relative to each other. For example, if all threads
are heavily accessing the memory at the same time, a larger
influence is to be expected than if the threads happen to access
the memory at different times. Because we cannot guarantee
an upper bound on the size of the performance influence and
because the influence is nondeterministic, we need to avoid
such performance influences as far as possible in order to
achieve accurate measurements.

If the benchmarked tool is concurrent and should be exe-
cuted using several cores, avoiding performance influences
between the tool’s own threads and processes is specific to the
tool and thus the responsibility of the tool itself or the user.
For performance influences on the tool from other processes,
the most reliable way to avoid them would be to execute only
one instance of the benchmarked tool at the same time, and
to ensure that no other processes outside the control of the
benchmarking environment are active. However, this might
not always be possible, for example, due to machines being
shared with other users, or due to the amount of benchmark-
ing work being so large that parallel executions are required.
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In such cases, the benchmarking environment should assign
a fixed set of CPU cores to each (parallel) tool execution
and not let the scheduler of the OS assign cores dynamically,
in order to prevent additional performance influences from
processes being moved between cores. The benchmarking
environment needs to compute the mapping of CPU cores per
run such that the CPU cores for one run are as close to each
other as possible and the sets of cores for separate runs are
as independent as possible on the hardware level,” and thus
the performance impact is minimized. Users need to know
about the characteristics of their benchmarking machine and
what kind of performance influences they need to expect, in
order to properly decide how many parallel executions are
acceptable for a given benchmark.

For example, we would usually consider it acceptable to
have parallel tool executions on different CPUs that each
have their own local memory, whereas it would usually con-
sidered to be not acceptable to have parallel tool executions
on different virtual cores of the same physical core (just like
there should never be two simultaneous tool executions shar-
ing one virtual core). More information on how hardware
characteristics can affect performance is given in Sect. 4. In
any case, the used resource allocation should be documented
and made available together with the benchmark results.

2.4 Respect nonuniform memory access

Systems with several CPUs often have an architecture with
nonuniform memory access (NUMA), which also needs to
be considered by a benchmarking environment. In a NUMA
architecture, a single CPU or a group of CPUs can access
parts of the system memory locally, i.e., directly, while other
parts of the system memory are remote, i.e., they can only
be accessed indirectly via another CPU, which is slower. The
effect is that once a process has to access remote memory, this
leads to a performance decrease depending on the load of the
inter-CPU connection and the other CPU. Hence, a single
tool execution should be bound to memory that is local to
its assigned CPU cores, in order to avoid nondeterministic
delays due to remote memory access.

2.5 Avoid swapping

Swapping out memory must be avoided during benchmark-
ing, because it may degrade performance in a nondeter-
ministic way. This is especially true for the benchmarked
process(es), but even swapping of an unrelated process can
negatively affect the benchmarking, if the benchmarked pro-
cess has to wait for more free memory to become available.
Absolutely preventing swapping can typically only be done
by the system administrator by turning off all available swap

7 i.e., with high cohesion and loose coupling

space. In theory, it is not even enough to ensure that the OS,
the benchmarking environment, and the benchmarked pro-
cesses all fit into the available memory, because the OS can
decide to start swapping even if there is still memory avail-
able, for example, if it decides to use some memory as cache
for physical disks. However, for benchmarking CPU-bound
tools, with high CPU and memory usage, and next to no I/O,
this is unlikely to happen with a modern OS. Thus, the main
duty of the benchmarking environment is to ensure that there
is no overbooking of memory, and that memory limits are
enforced effectively. It is also helpful if the benchmarking
environment monitors swap usage during benchmarking and
warns the user of any swapping.

2.6 Isolate individual runs

If several tool executions are executed in parallel, and to some
extent even if they are executed sequentially, the different
instances of the benchmarked tool(s) can interfere with each
other, which could influence the performance and/or change
the results.

One common reason for mutual interference are write
accesses to shared files in the temp directory and in the
home directory. For example, if a tool uses a temporary file
with a fixed name, a cache directory, or configuration files
in the home directory, parallel instances may interfere with
each other nondeterministically. Even if runs are executed
strictly sequentially, left-over files from previous runs could
influence later runs if the tool reads these files, and prevent
repeatability of experiments (because results then depend on
the order of executing the runs).

Another reason for mutual interference of parallel runs
are signals like SIGKILL or SIGTERY, if they get sent to
processes that belong to a different tool instance. This may
happen inadvertently, for example in a well-meaning cleanup
script that tries to terminate child processes of a tool with the
command killall.

The benchmarking environment should isolate the bench-
marked processes to prevent such interference.

3 Limitations of existing methods

Some of the methods that are available on Linux systems for
measuring resource consumption and for enforcing resource
limits of processes have several problems that make them
unsuitable for benchmarking, especially if child processes
are involved. Any benchmarking environment needs to be
aware of these limitations and avoid using naive methods
for resource measurements. However, later on in Sect. 8.2
we will see that indeed a number of existing benchmarking
tools use the methods described in this section and thus do
not ensure reliable results.

@ Springer
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3.1 Measuring resources may fail
3.1.1 Measuring CPU time and wall time

Measuring wall time is sometimes done by reading the sys-
tem clock at start and end of a run and calculating the
difference. However, because the system clock can jump due
to time adjustments and even change its pace, it is important
to use a time source that is guaranteed to be strictly monotonic
and of constant rate. Many operating systems and program-
ming languages offer such a time source with high precision
specifically for benchmarking.

Measuring CPU time of the main process of a tool, for
example using the tool time or a variant of the system call
wait (which returns the CPU time after the given process
terminated), does not reliably include the CPU time of child
processes that were spawned by the main process. The Linux
kernel only adds the CPU time used by child processes to that
of the parent process after the child process has terminated
and the parent process waited for the child’s termination with
a variant of the system call wait. If the child process has
not yet terminated or the parent did not explicitly wait for its
termination, the CPU time of the child is lost. This is a typical
situation that might happen, for example, if a verifier starts
an SMT solver as a child process and communicates with the
solver via stdin and stdout. When the analysis finishes,
the verifier would terminate the solver process, but usually
would not bother to wait for its termination. A tool that runs
different analyses in parallel child processes would also typ-
ically terminate as soon as the first analysis returns a valid
result, without waiting for the other analyses’ termination.®
In these cases, a large share of the total CPU time is spent by
child processes but not included in the measurement.

3.1.2 Measuring peak memory consumption

Some measurement tools only provide a view on the cur-
rent memory usage of individual processes, but we need to
measure the peak usage of a group of processes. Calculating
the peak usage by periodically sampling the memory usage
and reporting the maximum is inaccurate, because it might
miss peaks of memory usage. If the benchmarked process
started child processes, one has to recursively iterate over
all child processes and calculate the total memory usage.
This contains several race conditions that can also lead to
invalid measurements, for example, if a child process termi-
nates before its memory usage could be read. In situations
where several processes share memory pages (e.g., because

8 We experienced this when organizing SV-COMP’ 13, for a portfolio-
based verifier. Initial CPU-time measurements were significantly too
low, which was only discovered by chance. The verifier had to be
patched to wait for its subprocesses and the benchmarks had to be rerun.
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each of them loaded the same library, or because they com-
municate via shared memory), we cannot simply sum up
the memory usage of all processes. Thus, without keeping
track of every memory page of each process, manually filter-
ing out pages that do not occupy resources because of lazy
allocation, and counting each remaining page exactly once,
the calculated value for memory usage is invalid. If all this is
done with a high sampling frequency (to not miss short peaks
of memory usage), we risk that the benchmarked process is
being slowed down by the increased CPU usage.

3.2 Enforcing limits may fail

For setting resource limits, some users apply the tool
ulimit, which uses the system call setrlimit. A limit
can be specified for CPU time as well as for memory, and
the limited process is forcefully terminated by the kernel if
one of these limits is violated. However, similar to measur-
ing time with the system call wa1i t, limits imposed with this
method affect only individual processes, i.e., a tool that starts
n child processes could use n times more memory and CPU
time than allowed. Limiting memory is especially problem-
atic because either the size of the address space or the size
of the data segment (the heap) can be limited, which do not
necessarily correspond to the actual memory usage of the
process, as described in Sect. 2.1.2. Limiting the resident-set
size (RSS) is no longer supported.” Furthermore, if such a
limit is violated, the kernel terminates only the one violating
process, which might not be the main process of the tool. In
this case it depends on the tool itself how such a situation is
handled: it might terminate itself, or crash, or even contin-
uously respawn the terminated child process and continue.
Thus, this method is not reliable.

It is possible to use a self-implemented limit enforce-
ment with a process that samples CPU time and memory
usage of a tool with all its child processes, terminating all
processes if a limit is exceeded, but this is inaccurate and
prone to the same race conditions, as described above for
memory measurement.

3.3 Termination of processes may fail

In order to terminate a tool and all its child processes, one
could try to (transitively) enumerate all its child processes
and terminate each of them. However, finding and terminat-
ing all child processes of a process may not work reliably
for two reasons. First, a process might start child processes
faster than the benchmarking environment is able to terminate
them. While this is known as a malicious technique (‘“fork
bomb”), it may also happen accidentally, for example due
to a flawed logic for restarting crashed child processes of a

9 http://man7.org/linux/man-pages/man2/setrlimit.2.html
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tool. The benchmarking environment should guard against
this, otherwise the machine might become unusable. Sec-
ond, it is possible to “detach” child processes such that they
are no longer recognizable as child processes of the process
that started them. This is commonly used for starting long-
running daemons that should not retain any connection to the
user that started them, but might also happen incidentally if a
parent process is terminated before the child process. In this
case, an incomplete benchmarking framework could miss to
terminate child processes.

The process groups of the POSIX standard (established
with the system call setpgid!®)are notreliable for tracking
child processes. A process is free to change its process group,
and tools using child processes often use this feature.

3.4 Hardware allocation may be ineffective

There are two mistakes that can be made when attempting
to assign a specific set of CPU cores to a benchmark run.
First, the set of CPU cores for a process can be specified
with the tool taskset or alternatively by the system call
sched_setaffinity. However, a process can change
this setting freely for itself, and does not need to follow pre-
defined core restrictions. Thus, this is not a reliable way to
enforce a restriction of the CPU cores of a process.

Second, the numbering system of the Linux kernel for
CPU cores is complex and not consistent across machines
of different architectures (not even with the same kernel
version). Any “naive” algorithm for assigning cores to tool
executions (e.g., allocating cores with consecutive ids), will
fail to produce a meaningful core assignment, and give sub-
optimal performance, on at least some machines.

The Linux kernel assigns numeric ids for CPUs (named
physical [package] id), for physical cores (named core id),
and for virtual cores (named processor id or CPU id). The
latter is used for assigning cores to processes. Additionally,
there is a numeric id for NUMA memory regions (named
node id), which is used for restricting the allowed memory
regions of a process. There is no consistent scheme how these
ids are assigned by the kernel. In particular, we have found
the following intuitive assumptions to be invalid:

— CPUgs, virtual cores, and NUMA regions are always num-
bered consistently (instead, the virtual cores or NUMA
regions may be numbered in a different order than the
CPUs).

— The core id is assigned consecutively (instead, there may
be gaps).

— Virtual cores that belong to the same physical core
have processor ids that are as far apart as possible.

10" http://man7.org/linux/man-pages/man2/setpgrp.2.html

— Virtual cores that belong to the same physical core
have processor ids that are as close as possible (i.e.,
consecutive).

— Virtual cores that belong to the same physical core have
the same core id.

— Virtual cores that belong to different physical cores
have different core ids (instead, on systems with several
NUMA regions per CPU, there are several physical cores
on each CPU with the same core id).

— The tuple (physical [package] id, core id) uniquely iden-
tifies physical cores of the system.

For several of these invalid assumptions, a violation can be
seen in Figs. 12 or 13 in Appendix A.

Therefore, we must not rely on any assumption about the
numbering system and only use the explicit CPU topology
information given by the kernel. The authoritative source for
this information is the /sys/devices/system/cpu/
directory tree. Note that the file /proc/cpuinfo neither
contains the node id for NUMA regions nor the informa-
tion which virtual cores share the same hardware, and thus
cannot be used to compute a meaningful core assignment
for benchmarks.

3.5 Isolation of runs may be incomplete

Processes can be isolated from external signals by executing
each parallel tool execution under a separate user account.
This also helps to avoid influences from existing files and
caches in the user’s home directory, but it does not allow
separating the temporary directory for each run, and thus
parallel runs can still influence each other if they use tem-
porary files with hard-coded names. Many tools allow using
the environment variable TMPDIR for specifying a directory
that is used instead of /tmp, but not all tools support this
option. For example, the Java VM (both Oracle and Open-
JDK) ignores this variable.

4 Impact of hardware characteristics on parallel
tool executions

Certain hardware characteristics of today’s machines can
influence the performance of tools that are executed in paral-
lel on one machine. Because parallel executions, i.e., starting
several independent instances of the benchmarked tool at the
same time, are sometimes necessary in order to reduce the
time that is necessary for performing experiments with many
tool executions, it is important to understand the sources of
undesired performance influences and how to minimize their
impact. In this section, we present an overview of impor-
tant hardware characteristics and highlight the effects they
can have on parallel tool executions based on experimental
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results. Note that while similar effects occur for concurrent
tools, i.e., tools that employ several threads or processes, we
consider here only the effects between parallel tool execu-
tions and not those between the processes and threads inside
a single tool execution (cf. Sect. 2.3).

4.1 Overview of hardware characteristics

In today’s machines, CPU cores can typically be roughly
organized in a hierarchy with three layers:'! A machine may
have multiple CPUs (also named sockets or [physical] pack-
ages), each CPU may have multiple physical cores, and each
physical core may have multiple virtual cores (also named
[hardware] threads or processors). The virtual cores of one
physical core may share some execution units, level-1, and
level-2 caches (e.g., in case of hyperthreading). The physical
cores of one CPU may share a level-3 cache and the connec-
tion to the RAM. The CPUs of one machine may share the
connection to the RAM and to I/O. If not all cores on the
system share the same connection to the RAM, the system
is said to have a NUMA architecture. Appendix A shows
examples of two hardware architectures.

The “closer” two cores are, i.e., the more hardware they
share, the larger can be the mutual performance influence
of two threads running on them in parallel. The largest
influence is to be expected by hyperthreading (several vir-
tual cores sharing execution units) or the “module” concept
of AMD CPUs (several virtual cores sharing level-1 and
level-2 caches). Even if we use separate physical cores for
each tool execution, there can be further nondeterministic
influences on performance. Modern CPUs often adjust their
frequency by several hundred MHz depending on how many
of their cores are currently used, with the CPU running faster
when less cores are used (this is commonly called “Turbo
Boost” or “Turbo Core”). For memory-intensive programs,
the influence by other processes running on different physical
cores that share the same level-3 cache and the connection
to the RAM (and thus compete for memory bandwidth) can
also be significant.

On the other hand, the closer two cores are, the faster they
can typically communicate with each other. Thus, we can
reduce performance impact from communication by allocat-
ing cores that are close together to each tool execution.

4.2 Experiment setup

To show that these characteristics of the benchmarking
machine can significantly influence the performance, and

1T Systems can be even more complex and have more layers. However,
the hierarchy presented here captures the facts that are most important
for the performance of software from our target domain. Thus, we use
this abstracted definition and nomenclature.
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thus have a negative influence on benchmarking if not han-
dled appropriately, we conducted several experiments on a
machine with two Intel Xeon E5-2650 v2 CPUs and 68 GB
of RAM per CPU. The CPUs (each with eight physical cores)
support hyperthreading (with two virtual cores per physical
core) and Turbo Boost (base frequency is 2.6 GHz, with up to
3.4 GHz if only one core is used). The machine has a NUMA
architecture. A graphical overview of this system can be seen
in Fig. 13 of Appendix A.

As an example for a benchmarked tool we took the ver-
ifier CPACHECKER'? in revision 17829 from the project
repository'? with its configuration for predicate analysis.
The machine was running a 64-bit Ubuntu 14.04 with
Linux 3.13 and OpenJDK 1.7 as Java virtual machine.
As benchmark set we used 4011 C programs from SV-
COMP’15 [5] (excluding categories not supported by this
configuration of CPACHECKER). In order to measure only
effects resulting from concurrency between parallel tool
executions and avoid effects from concurrency inside each
tool execution, we restricted each tool execution to one
virtual core of the machine. We also limited each tool
execution to 4.0 GB of memory and 900s of CPU time.
Except were noted, Turbo Boost was disabled such that
all cores were running at 2.6 GHz. Apart from our tool
executions, the machine was completely unused. All exper-
iments were conducted with BENCHEXEC 1.2. We show
the accumulated CPU time for a subset of 2414 programs
that could be solved by CPACHECKER within the time
and memory limit on the given machine. (Including time-
outs in the accumulated values would skew the results.)
Time results were rounded to two significant digits. Tables
with the full results and the raw data are available on our
supplementary web page.'*

Note that the actual performance impact of certain hard-
ware features will differ according to the characteristics of
the benchmarked tool and the benchmarking machine. For
example, a tool that uses only little memory but fully utilizes
its CPU core(s) will be influenced more by hyperthreading
than by nonlocal memory, whereas it might be the other way
around for a tool that relies more on memory accesses. In
particular, the results that are shown here for CPACHECKER
and our machine are not generalizable and show only that
there is such an impact. Because the quantitative amount of
the impact is not predictable and might be nondeterministic,
it is important to avoid these problems in order to guarantee
reliable benchmarking.

12 https://cpachecker.sosy-lab.org
13 https://svn.sosy-lab.org/software/cpachecker/trunk

14 https://www.sosy-lab.org/research/benchmarking#benchmarks
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Fig. 2 Scatter plot showing the influence of hyperthreading for
2414 runs of CPACHECKER: the data points above the diagonal show a
performance decrease due to an inappropriate assignment of CPU cores

4.3 Impact of hyperthreading

To show the impact of hyperthreading, which is also named
simultaneous multithreading, we executed the verifier twice
in parallel on one CPU of our machine. In one part of the
experiment, we assigned each of the two parallel tool execu-
tions to one virtual core from separate physical cores of the
same CPU. In a second part of the experiment, we assigned
each of the two parallel tool executions to one virtual core
from the same physical core, such that both runs had to share
the hardware resources of one physical core. A scatter plot
with the results is shown in Fig. 2. For the 2414 solved
programs from the benchmark set, 16h of CPU time were
necessary using two separate physical cores and 25 h of CPU
time were necessary using the same physical core, an increase
of 53% caused by the inappropriate core assignment. This
shows that hyperthreading can have a significant negative
impact, and parallel tool executions should not be scheduled
on the same physical core.

4.4 Impact of shared memory bandwidth and caches

To show the impact of a shared memory connection and a
shared level-3 cache for multiple physical cores, we exper-
imented with 1 to 8 parallel tool executions on the same
CPU (each on its own physical core), i.e., with 1 to 8 used
physical cores that share a common level-3 cache and the
memory bandwidth. The second virtual core of every phys-
ical core was unused, and Turbo Boost was disabled. A plot
with the results is shown in Fig. 3 (shaded blue bars). For

the 2414 solved programs from the benchmark set, 16h of
CPU time were necessary if only one physical core was used,
whereas 20 h of CPU time were necessary with eight physical
cores used; the increase of 22% is caused by the contention
on cache and memory accesses. The linear-regression line in
the plot shows that the used CPU time scales linearly with
the amount of used cores. This can be explained by the CPU
dynamically allocating equal shares of its memory bandwidth
and level-3 cache to each of those cores that are actively used.

This experiment shows that parallel tool executions on
the same CPU can influence the measured CPU time signif-
icantly, and thus need to be avoided for maximal precision
and accuracy of benchmarking results. However, because the
time that users have to wait for the results of experiments
with many tool executions can be decreased drastically by
using parallel tool executions, it might in practice sometimes
be necessary to compromise and use at least a few paral-
lel tool executions during benchmarking. How many parallel
instances are acceptable depends on the used hardware and
the user’s requirements on precision and accuracy and cannot
be answered in general. Note that by utilizing only a subset
of the cores of a CPU the size of the undesired influence on
CPU time can be reduced while keeping most of the time
savings compared to no parallelization at all.

4.5 Impact of Turbo Boost

To show the impact of Turbo Boost, we executed benchmarks
with the same setup as in Sect. 4.4, but now with Turbo Boost
enabled. This means that the CPU uses a higher frequency
depending on the current load of its cores. Without Turbo
Boost, a used core of this CPU always runs at 2.6 GHz. With
Turbo Boost, a single used core of this CPU can run at 3.4
GHz, if the CPU is otherwise idle, and even if all eight cores
are used, they can still run at 3.0 GHz. The results are also
shown in Fig. 3 (red bars). As expected, due to the higher
frequency, the CPU time is lower than with Turbo Boost
disabled, and the more physical cores are used in parallel, the
higher the used CPU time becomes. The latter effect is larger
if Turbo Boost is enabled than if Turbo Boost is disabled,
because in addition to the contention of cache and memory
bandwidth, there is now the additional performance influence
of the varying CPU frequency. Instead of increasing by 22%,
the used CPU time now increases by 39% (from 13 to 18 h)
if using eight instead of one physical core. Thus, a dynamic
scaling of the CPU frequency should be disabled if multiple
tool executions run in parallel on a CPU.

4.6 Impact of NUMA
To show the impact of NUMA, we executed 16 instances

of the verifier in parallel, one instance per physical core of
the two CPUs of our machine. In one part of the experi-
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Fig. 3 Plotshowing the influence of Turbo Boost, shared level-3 cache,
and shared memory bandwidth for 2414 runs of CPACHECKER

ment, we assigned memory to each tool execution that was
local to the CPU that the tool was executed on. In a sec-
ond part of the experiment, we deliberately forced each of
the 16 tool executions to use only memory from the other
CPU, such that all memory accesses were indirect. For the
2414 solved programs from the benchmark set, 23 h of CPU
time were necessary using local memory and 24h of CPU
time were necessary using remote memory, an increase of
6.8% caused by the inappropriate memory assignment. While
the performance impact in this case is not that large, there
exists no reason to not ensure a proper memory assign-
ment in the benchmarking environment and rule out this
influence completely.

4.7 Impact of multiple CPUs

To show the impact of multiple CPUs used in parallel, we
experimented with 1 to 16 parallel tool executions across all
CPUs. For one part of the experiment, we used the same
setup as in Sect. 4.4: using only one CPU and executing
1 to 8 parallel tool executions, each on a designated physical
core (hence, the shaded blue bars in Fig. 4 match exactly
the shaded blue bars in Fig. 3). For a second part of the
experiment, we used both CPUs of the machine, executing
1 to 8 parallel tool executions on each CPU, i.e., with 2 to 16
parallel tool executions on the machine. A summary of the
results is shown in Fig. 4. If only one physical core of the
whole machine is used, 16h of CPU time were necessary
for the 2414 tool executions. This increases linearly to 20h
of CPU time if all eight cores of one CPU are used (shaded
blue bars in the plot). If one physical core of each of the two
CPUsisused (i.e., two parallel tool executions), the necessary
CPU time is also 16h: there is no significant difference to
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Fig. 4 Plotshowing the influence of using multiple CPUs for 2414 runs
of CPACHECKER

using one physical core of only one CPU. However, if more
physical cores per CPU are used, using n physical cores of
each of the two CPUs with 2n parallel tool executions (red
bars) is slower than using n physical cores of only one of
the CPUs. The maximal difference occurs for eight cores
per CPU, which uses 22h of CPU time compared to 20h
(an increase of 14%).

We also show a scatter plot in Fig. 5 with more detail
on the last part of the experiment, i.e., for 8 used physical
cores per CPU, respectively. It shows that for some of the
2414 runs, the performance was actually equal in both cases
(the data points on the diagonal), whereas for others the CPU
time is almost doubled (the data points close to the gray line
for y = 2x).

This experiment shows that parallelization of tool execu-
tions across multiple CPUs at least sometimes needs to be
treated similarly to parallelization of tool executions across
multiple cores of the same CPU.

4.8 Investigation of impact of multiple CPUs

Because we did not expect the performance impact of using
multiple CPUs with separate local memory for independent
parallel tool executions, we tried to find out the source of
this effect using additional experiments and to ensure that
other possible performance influences were ruled out as far
as possible. Unfortunately we did not find an explanation so
far, and the respective machine is no longer available for fur-
ther experiments, so the reason for the performance impact
of multiple CPUs remains unknown to us. However, we doc-
ument these experiments here in the hope that this will help
others to investigate this issue in the future.
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Fig. 5 Scatter plot showing the influence of using multiple CPUs for
2414 runs of CPACHECKER: the data points above the diagonal show a
performance decrease due to using two CPUs in parallel instead of only
one CPU

We repeated the complete experiment from Sect. 4.7 at
least two times, and the performance variation across the
three experiments was negligible compared to the difference
between using one or two CPUs. We also tried to reproduce
this effect on two other multi-CPU machines, both with AMD
CPUs (four Opteron 6380 and eight Opteron 8356, respec-
tively). In both cases there was no significant performance
change for varying the number of used CPUs. So we were
not able to reproduce the effect on the AMD CPUs. Unfortu-
nately, we did not have access to other multi-CPU machines
with Intel CPUs.

On our machine with Intel CPUs, the effect of decreased
performance if both CPUs are active did not occur in exper-
iments with a tool that uses mainly the CPU and not much
memory. To measure this, we experimented with the same
setup for the tool bc (an arbitrary-precision calculator) and
let it compute 7 with 1000 to 19 890 digits using the for-
mula arctan(1) x 4. This takes between 0.43 and 880s on
our machine and uses less than 970 kB of memory.

Both CPUs in the machines with the two Intel CPUs have
their own directly connected memory (visible in Fig. 13 of
Appendix A), and we made sure that all tool executions use
only memory belonging to the same CPU as their CPU core(s)
to avoid performance influences from NUMA. We also made
sure that even the start of each tool execution already occurred
on its assigned core, such that migration between cores, or
even between CPUs, was avoided. There are no hardware
caches that are shared between the CPUs in this system,
and no swap space. There is also no correlation between
the fact that a tool execution experienced a slow-down if

both CPUs were active and the specific CPU that the tool
was executed on. For both CPUs, there were tool executions
with unaffected performance as well as tool executions with
significantly increased CPU time.

The I/O (which would be a shared bottleneck) was kept
to a minimum during benchmarking. Apart from loading
the Java virtual machine and the verifier, each run used I/O
only for loading the input file and for writing a log file with
the output of the verifier (output of each tool execution was
15 kB on average and always less than 750 kB). Switching
between a local SSD and a file server connected via net-
work for all I/O except loading the JVM did not influence
the performance, indicating that I/O indeed was not a bot-
tleneck. We also verified that no additional temporary files
were used. The tool executions were independent and the
processes did not communicate with each other. Enabling
Turbo Boost decreased the necessary CPU time in general
and made the effect slightly larger. Upgrading the Linux ker-
nel from version 3.13 to 3.19 improved the performance in
general by approximately 1 to 2%, but did not change the
effect of decreased performance for using multiple CPUs.
The machine is kept in an air-conditioned server room and
did not throttle due to overheating during benchmarking.

For further investigation, we collected some statistics
about the CPUs using the perf framework of the Linux
kernel'> while executing the tool. (These statistics are col-
lected using internal hardware counters of the CPU and do
not affect performance.) The result was that the number of
context switches, CPU-migrations of threads, page faults,
executed instructions and branches, and branch misses for
one execution of the whole benchmark set were nearly the
same, regardless of whether one or two CPUs were used, and
thus gave no indication where the performance impact could
come from.

One possible reason could be that Linux keeps only one
global file-system cache that is shared for all processes from
all CPUs. This means that, after a file has been loaded into
the file-system cache, accessing the content of this file will be
somewhat faster from one CPU than from the other CPU(s)
due to NUMA. This behavior cannot be disabled. To avoid
this effect, we used two separate on-disk copies of the bench-
marked tool, and each copy was used for all runs executing
on one specific CPU. Compared to using one on-disk copy of
the benchmarked tool, this did not change the performance.
While there was still only a single install of the JVM used
for all tool executions, we can assume that the single copy
of the JVM in the file-system cache of the Linux kernel
is not the reason for this effect. After all, the experiment
from Sect. 4.6 showed a smaller effect even if all memory
accesses were indirect, not only those to the JVM files in the
file-system cache.

15 https://perf.wiki.kernel.org
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S State-of-the-art benchmarking with cgroups and
containers

We listed aspects that are mandatory for reliable bench-
marking, and explained flaws of existing methods. In the
following, we present two technologies that can be used to
avoid these pitfalls.

5.1 Introducing cgroups for benchmarking

Control groups (cgroups) are a feature of the Linux kernel for
managing processes and their resource usage, which is avail-
able since 2007 [28]. Differently from all other interfaces
for these problems, cgroups provide mechanisms for manag-
ing groups of processes and their resources in an atomic and
race-free manner, and are not limited to single processes. All
running processes of a system are grouped in a hierarchical
tree of cgroups, and most actions affect all processes within
a specific cgroup. Cgroups can be created dynamically and
processes can be moved between them. There exists a set of
so-called controllers in the kernel, each of which controls and
measures the consumption of a specific resource by the pro-
cesses within each cgroup. For example, there are controllers
for measuring and limiting CPU time, memory consumption,
and I/O bandwidth.

The cgroups hierarchy is made accessible to programs
and users as a directory tree in a virtual file system, which
is typically mounted at /sys/fs/cgroups. Usual file-
system operations can be used to read and manipulate the
cgroup hierarchy and to read resource measurements and
configure limits for each of the controllers (via specific files
in each cgroup directory). Thus, it is easy to use cgroups
from any kind of tool, including shell scripts. Alternatively,
one can use a library such as libcg,16 which provides an
API for accessing and manipulating the cgroup hierarchy.
Settings for file permission and ownership can be used to
fine-tune who is able to manipulate the cgroup hierarchy.

When a new process is started, it inherits the current
cgroup from its parent process. The only way to change the
cgroup of a process is direct access to the cgroup virtual file
system, which can be prevented using basic file-system per-
missions. Any other action of the process, whether changing
the POSIX process group, detaching from its parent, etc., will
not change the cgroup. Thus, cgroups can be used to reliably
track the set of (transitive) child processes of any given pro-
cess by putting this process into its own cgroup. We refer to
the manual for details.!”

The following cgroup controllers are relevant for reliable
benchmarking:

16 http://libcg.sourceforge.net

17" https://www.kernel.org/doc/Documentation/cgroup-v1
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cpuacct measures, for each cgroup, the accumulated
CPU time that is consumed by all processes of the cgroup.
A time limit cannot be defined, but can be implemented in
the benchmarking environment by periodically checking the
accumulated time.

cpuset supports restricting the processes in a cgroup
to a subset of the available CPU cores. On systems with
more than one CPU and NUMA, it allows restricting
the processes to specific parts of the physical memory.
These restrictions are applied additionally to those set with
sched_setaffinity, such that changes to the latter will
not affect restrictions made via cgroups.

freezer supports freezing all processes of a cgroup in a
single operation. This can be used for reliable termination
of a group of processes by freezing them first, sending the
kill signal to all of them, and afterward unfreezing (“thaw-
ing”) them. This way the processes do not have the chance
to start other processes because between the time the first
and the last process receive the kill signal, none of them can
execute anything.

memory supports, for each cgroup, restricting maximum
memory usage of all processes together in the cgroup, and
measuring current and peak memory consumption. If the
defined memory limit is reached by the processes in a cgroup,
the kernel first tries to free some internal caches that it
holds for these processes (for example disk caches), and
then terminates at least one process. Alternatively, instead
of terminating processes, the kernel can send an event to a
registered process, which the benchmarking framework can
use to terminate all processes within the cgroup. The kernel
counts only actually used pages toward the memory usage,
and because the accounting is done per memory page, shared
memory is handled correctly (every page that the processes
use is counted exactly once).

The memory controller supports two limits for memory
usage, one on the amount of physical memory that the pro-
cesses can use, and one on the amount of physical memory
plus swap memory. If the system has swap memory, both
limits need to be set to the same value for reliable bench-
marking. If only the former limit is set to a specific value, the
processes could use so much memory plus all of the avail-
able swap memory (and the kernel would automatically start
swapping out the processes if the limit on physical memory
is reached). Similarly, for reading the peak memory con-
sumption, the value of physical memory plus swap memory
should be used. Sometimes, the current memory consump-
tion of a cgroup is not zero even after all processes of the
cgroup have been terminated, if the kernel decided to still
keep some pages of these processes in its disk cache. To
avoid influencing the measurements of later tool executions
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by this, a cgroup should be used only for a single run and
deleted afterward, with a new tool execution getting a new,
fresh cgroup.!®

As described in Sect. 3.4, the Linux kernel does not use
a consistent scheme for assigning processor ids to virtual
cores and node ids to memory regions, which are the ids used
by the cpuset controller. Information about the hardware
topology and the relations of CPU cores to each other and
to memory regions needs to be read from the directory tree
/sys/devices/system/cpu/.'” There, one can find a
directory named cpu<i> for each virtual core i, and inside
each such directory, the following information is present: the
symlinks named node< j> point to the NUMA region(s) of
this virtual core, topology/physical_package_id
contains the physical id of this virtual core, topology/
core_1id contains the core id of this virtual core,
topology/core_siblings_list contains the vir-
tual cores of the same CPU as this virtual core, and
topology/thread_siblings_1list contains the vir-
tual cores of the same physical core as this virtual core.

5.2 Benchmarking containers based on namespaces

Container is a common name for an instance of OS-level vir-
tualization on Linux. Contrary to virtual machines, there is
no virtual hardware simulated for a container, and a con-
tainer does not have its own kernel running. Instead, the
applications in a container run directly on the same kernel
as applications outside the container, without any additional
layers that would reduce performance. However, the kernel
provides a limited view of the system to processes inside
a container, such that these processes are restricted in what
they can do with regard to the system outside their container.
Containers can be used to execute a single application in iso-
lation. A well-known framework for creating containers in
Linux is Docker.

The key technology behind containers are namespaces,
which are a feature of the Linux kernel for providing individ-
ual processes or groups of processes with a different view on
certain system resources compared to other processes. There
exist different kinds of namespaces, which can be used indi-
vidually or in combination, each responsible for isolating
some specific system resources. For example, assigning a
different network namespace to a process will change which
network interfaces, IP addresses, etc., the process sees and
is able to use. Assigning a different namespace for process
ids (PIDs) will change which processes can be seen, and
which PIDs they seem to have.

20

18 Or clear the caches with drop_caches.
19 Or use a library that does this reliably.

20 http://man7.org/linux/man-pages/man7/namespaces.7.html

Using namespaces, we can create benchmarking contain-
ers that prevent any communication or interference with
processes outside the container. We need only a modern
(>3.8) Linux kernel for this; no other software is neces-
sary. The benchmarked tool will typically not notice that it is
executed in such a container. The performance of executing
a process within a separate namespace (i.e., inside a con-
tainer) is comparable to executing it directly in the initial
namespace, because the process still interacts directly with
the same kernel and there are no additional layers like in
hardware-virtualization solutions.

Since Linux 3.8 (released February 2013) it is possible
to create and configure namespaces as a regular user with-
out additional permissions. At a first glance it may seem that
creating and joining a namespace can give a process more
permissions than it previously had (such as changing net-
work configuration or file-system mounts), but all these new
permissions are only valid inside the namespace, and none
of these actions affect the system outside of this namespace.

The Linux kernel provides the following namespaces that
are relevant for reliable benchmarking:

mount namespaces allow changing how the file-system
layout appears to the processes inside the namespace. Exist-
ing directories can be mounted into a different place using
“bind” mounts (similar to symbolic links), and mount points
can be set read-only. Unprivileged users cannot create new
mounts of most file systems, even if they are in a mount
namespace, but for a few special file systems this is allowed.
For example, RAM disks can be mounted by everyone in a
mount namespace.

ipc namespaces provide separation of several different
forms of interprocess communication (IPC), such as POSIX
message queues.

net namespaces isolate the available network interfaces
and their configuration, e.g., their IP addresses. By default, a
new network namespace has only a loopback interface with
the IP addresses 127.0.0.1 (IPv4) and : : 1 (IPv6) and
thus, processes in such a namespace have no access to exter-
nal network communication, but can still use the loopback
interface for communication between the processes within
the same namespace (note that the loopback interfaces of dif-
ferent network namespaces are different: a loopback interface
cannot be used for communication with processes of separate
network namespaces).

pid namespaces, which can be nested, provide a separate
range of process IDs (PIDs), such that a process can have dif-
ferent PIDs, one in each (nested) namespace that it is part of.
Furthermore, the PID namespace also affects mounts of the/
proc file system, which is the place where the Linux kernel
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provides information about the currently running processes.
If anew /proc file system is mounted in a PID namespace,
it will list only those processes that are part of this names-
pace. Thus, a PID namespace can be used to restrict which
other processes a process can see: only such processes that
are in the same PID namespace are visible. This prevents,
for example, sending signals to processes and killing them,
if they are not visible in the current namespace. Additionally,
because the first process in every new PID namespace has a
special role (like the init process of the whole system),
the kernel automatically terminates all other processes in the
namespace when this first process terminates. This can be
used for a reliable cleanup of all child processes.

user namespaces provide a mapping of user and group
ids, such that a certain user id inside a namespace appears
as a different id outside of it. Creating a user namespace is
necessary for regular (non-root) users in order to create any
other kind of namespace.

For each kind of namespace, an initial namespace is cre-
ated at boot. These are the namespaces that are used for all
processes on most systems. Processes can create new names-
paces and move between them, but for the latter they need
to get a reference to the target namespace, which can be
prevented by using the PID namespace. Thus, it is possi-
ble to prevent processes from escaping back into an existing
namespace such as the initial namespace. Furthermore, all
namespace features are implemented in a way such that it
is not possible to escape the restrictions of a namespace by
creating and joining a fresh namespace: a freshly created
namespace will not allow viewing or manipulating more sys-
tem resources than its parent.

With mount namespaces we can customize the file-system
layout. We can, for example, provide an own private /tmp
directory for each tool execution by binding a freshly created
directory to / tmp in the container of the tool execution. This
avoids any interference between tool executions due to files
in /tmp, and the same solution can also be applied for all
other directories whose actual content should be invisible in
the container. In order to ensure that no files created by a
tool execution are left over in other directories (and possibly
influence later tool executions), we can set all other mount
points to read-only in the container. However, this can be
inconvenient, for example, if the tool should produce some
output file, or if it expects to be able to write in some fixed
directory (like the home directory). The solution for this is
to use an overlay file system.

Overlay file systems®!' use two existing directories, and
appear to layer one directory over the other. Looking at the
overlay file system, a file in the upper layer shadows a file

21 https://www.kernel.org/doc/Documentation/filesystems/
overlayfs.txt
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with the same name in the lower layer. All writes done to the
overlay file system go to the upper layer, never to the lower
layer, which is guaranteed to remain unchanged. We can use
this to present a directory hierarchy to the benchmarked tool
that is initially equal to the directory hierarchy of the system
and appears to be writable as usual, but all write accesses
are rerouted to a temporary directory and do not affect the
system directory. To do so we mount an overlay file system
with the regular directory hierarchy of the system as lower
layer and an empty temporary directory as upper layer.

An overlay file system is available in the Linux kernel
since version 3.18, and on Ubuntu it can be used by regular
users inside a mount namespace. On other distributions or
older kernels we have to fall back to either read-only mounts
or to giving direct write access to at least some directories of
the file system.

6 BENCHEXEC: a framework for reliable
benchmarking

In the following, we describe our implementation
BENCHEXEC, a benchmarking framework for Linux that ful-
fills the requirements from Sect. 2 by using the techniques
of cgroups and namespaces from Sect. 5. It is available on
GitHub?? as open source under the Apache 2.0 license.

BENCHEXEC consists of two parts, both written in Python.
The first part is runexec, responsible for benchmarking a
single run of a given tool in isolation, including the reli-
able limitation and accurate measurement of resources, and
encapsulates the use of cgroups and namespaces. This part
is designed such that it is easy to use also from within other
benchmarking frameworks. The second part is responsible
for benchmarking a whole set of runs, i.e., executing one or
more tools on a collection of input files by delegating each
run to runexec and then aggregating the results. It con-
sists of a program benchexec for the actual benchmarking
and a program table-generator for postprocessing
of the results.

6.1 System requirements

Full support for all features of BENCHEXEC is available on
Ubuntu with a Linux kernel of at least version 3.18 (default
since Ubuntu 15.04). On older kernels or other distributions,
the overlay file system cannot be used and the file-system lay-
out inside the containers needs to be configured differently.
On kernels older than Linux 3.8, BENCHEXEC’s use of con-
tainers needs to be disabled completely and thus isolation of
runs will not be available, but other features of BENCHEXEC

22 https://github.com/sosy-lab/benchexec
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(such has accurate resource measurements and limits, and
sensible allocation of hardware resources) remain usable.

For the use of cgroups by BENCHEXEC, a few requirements
are necessary that may demand assistance by the adminis-
trator of the benchmarking machine. Cgroups including the
four controllers listed in Sect. 5.1 must be enabled on the
system and the account for the benchmarking user needs the
permissions to manipulate (a part of) the cgroup hierarchy.
If the benchmarking machine has swap, swap accounting
must be enabled for the memory controller. For enabling
cgroups and giving permissions, we refer to standard Linux
documentation. For more details on how to setup the prereq-
uisites for BENCHEXEC, we refer to the respective chapter
of the documentation.?

After these steps, no further root access is necessary and
everything can be done with a normal user account. Thus,
it is possible to use machines for benchmarking that are not
under one’s own administrative control. By creating a special
cgroup for benchmarking and granting permissions only for
this cgroup, it is also possible for the administrator to prevent
the benchmarking user from interfering with other processes
and to restrict the total amount of resources that the bench-
marking user may use. For example, one can specify that a
user may use only a specific subset of CPU cores and amount
of memory for benchmarking, or partition the resources of
shared machines among several users.

6.2 Benchmarking a single run

We define a run as a single execution of a tool, with the
following input:

— the full command line, i.e., the path to the executable with
all arguments, and optionally,

the content supplied to the tool via stdin,

— the limits for CPU time, wall time, and memory, and
the list of CPU cores and memory banks to use.

A run produces the following output:

measurement values (e.g., CPU time, wall time, and peak
memory consumption of the tool),

the exit code of the main process,

output written to stdout and stderr by the tool, and
— the files created or written by the tool.

The program runexec executes a tool with the given input,
provides the output of the run, and ensures (using cgroups
and namespaces) adherence to the specified resource limits,
accurate measurement of the resource usage, isolation of the

23 https://github.com/sosy-lab/benchexec/blob/master/doc/
INSTALL.md
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Fig. 6 Resource control and process isolation by runexec; arun can
consist of many processes; the vertical bars “Isolation” illustrate that
each run is executed in isolation and protected to not access other runs;
the horizontal bars “Resource Limitation / Measurement” illustrate that
the resources are controlled by cgroups and a run can access only the
explicitly assigned resources

process with regard to network usage, signals, and file-system
writes, and reliable cleanup of processes after execution (i.e.,
no process survives). The benchmarking containers created
by runexec are illustrated in Fig. 6. If necessary, the bench-
marking containers can be customized via additional options,
e.g., with regard to the file-system layout (which directo-
ries are hidden in the container or made read-only etc.), or
whether network access is allowed from within the container.

If runexec is used as a stand-alone tool, the inputs are
passed to runexec as command-line parameters. Alterna-
tively, runexec can be used as a Python module for a more
convenient integration into other Python-based benchmark-
ing frameworks.

An example command line for executing a tool on all
16 (virtual) cores of the first CPU of a dual-CPU system,
with a memory limit of 16 GB on the first memory bank, and
a time limit of 1005 is:

runexec --timelimit 100s --memlimit 16GB
--cores 0-7,16-23 --memoryNodes 0 --
<TOOL_CMD>

The output of runexec then looks as follows (log on
stderr, result on stdout):

10:35:35 - INFO - Starting command <TOOL_CMD>
10:35:35 - INFO - Writing output to output.log
exitcode=0

returnvalue=0

walltime=1.51596093178s

cputime=2.514290687s

memory=130310144

In this case, the run took 1.5s of wall time, and the tool
used 2.5 s of CPU time and 130 MB of RAM before returning
successfully (return value 0). The same could be achieved
by importing runexec as a module from within a Python
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Fig. 7 Benchmarking with benchexec; benchexec supports the
user by automating the execution of experiments with many runs;
besides the benchmarked tool, it expects the benchmark definition and
a set of input files; benchexec executes a series of runs, which are

program with a code snippet as in Listing 1 of Appendix A,
which returns a dictionary that holds the same information as
the key-value pairs printed to stdout in the example above.
The precise meaning of each of these values is explained in
the BENCHEXEC documentation.>*

6.3 Benchmarking a set of runs

Benchmarking typically consists of processing runs on hun-
dreds or thousands of input files, and there may be several
different tools or several configurations of the same tool that
should be executed on the same input files. BENCHEXEC
provides two programs that allow to perform such large
experiments and analyze the results as easily as possible.
An overview over the process of using these programs can
be seen in Fig. 7.

benchexec is a program that executes a set of runs. It
receives as input a benchmark definition, which consists of
the following components:

— aset of input files,

— the name of the tool to use,

— command-line arguments for the tool (e.g., to specify a
tool configuration),

— the limits for CPU time, memory, and number of CPU
cores, and

— the number of runs that should be executed in parallel.

This benchmark definition is given in XML format; an
example is available in the tool documentation® and in
Listing 2 of Appendix B. Additionally, a tool-info module
(atool-specific Python module) needs to be written that con-

24 https://github.com/sosy-lab/benchexec/blob/master/doc/
run-results.md

25 https://github.com/sosy-lab/benchexec/blob/master/doc/
benchexec.md
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handled (each separately) by runexec (cf. Fig. 6); the result is an
XML file that contains the raw result data; convenient postprocessing is
possible using table-generator, which creates customized CSV
files and data visualizations (tables and plots) based on HTML

tains functions for creating a command-line string for a run
(including input file and user-defined command-line argu-
ments) and for determining the result from the exit code and
the output of the tool. Such a tool-info module typically has
under 50 lines of Python code, and needs to be written only
once per tool. Experience shows that this tool-info module
can be written and integrated successfully into BENCHEXEC
also by developers that previously were not familiar with
BENCHEXEC.?®

We are often also interested in classifying the results
into expected and incorrect answers. BENCHEXEC sup-
ports this for SMT solvers that are compliant to the
SMT-LIB standard [2], and for the domain of automatic soft-
ware verification, where it gets as input a property to be
verified in the format used by SV-COMP [5]?’. Classification
of results for further domains can be added with a few lines
of code.

benchexec and its benchmark-definition format also
support specifying different configuration options for subsets
of the input files, as well as several different tool configura-
tions at once, each of which will be benchmarked against all
input files (cf. Listing 2 of Appendix B).

The program benchexec starts with trying to find a suit-
able allocation of the available resources (CPU cores and
memory) to the number of parallel runs. For this, it first
checks whether there are enough CPU cores and memory
in the system to satisfy the core and memory requirements
for all parallel runs. Then it assigns cores to each parallel
run such that (if possible) a single run is not spread across
different CPUs, and different runs use different CPUs or at
least different physical cores. Measurement problems due to

26 SV-COMP’16 for the first time required all participating teams to
contribute such a module for their tool to BENCHEXEC [6], leading to
21 new tools being integrated into BENCHEXEC.

27 Tools that do not support this format can also be benchmarked. In
this case, the property is not passed to the tool, but used only internally
by BENCHEXEC to determine the expected result.


https://github.com/sosy-lab/benchexec/blob/master/doc/run-results.md
https://github.com/sosy-lab/benchexec/blob/master/doc/run-results.md
https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md
https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md

Reliable benchmarking: requirements and solutions

17

NUMA are avoided by letting each run use only memory
that is directly connected to the CPU(s) on which the run
is scheduled. Thus, benchexec automatically guarantees
the best allocation of the available resources that mini-
mizes the nondeterministic performance influences that were
shown in Sect. 4 as far as possible for the given number of
parallel runs.

Afterward, benchexec uses runexec to execute the
benchmarked tool on each input file with the appropriate
command line, resource limits, etc. It also interprets the
output of the tool according to the tool-info module (if appli-
cable, it also determines whether the result was correct).
The result of benchexec is a data set (in XML format)
that contains all information from the runs: tool result, exit
code, and measurement values. The output of the tool for
each run is available in separate files. Additional information
such as current date and time, the host and its system infor-
mation (CPU and RAM), values of environment variables,
and the effective resource limits and hardware allocation are
also recorded.

table-generator is a program that produces
tables from the results of one or more executions of
benchexec. If results of several executions are given to
table-generator, they are combined and presented in
the table in column groups, allowing to easily compare the
results, for example, across different configurations or revi-
sions of a tool, or across different tools. Each line of the
generated table contains the results for one input file. There
are columns for the tool result and measurement values (such
as CPU time, wall time, memory usage, etc.). These tables
are written in two formats. A CSV-based format allows fur-
ther processing of the raw data, such as with gnuplot or
R for producing plots and statistical evaluations, a spread-
sheet program, or IATEX packages for reading CSV files in
order to present results in a paper as described in Sect. 7.
The second format is HTML, which allows the user to
view the tables conveniently with nothing more than a web
browser. The HTML table additionally provides access to
the text output of the tool for each run and contains aggre-
gate statistics and further relevant information such as tool
versions, resource limits, etc. The presentation of the mea-
surement results in the table follows the recommendations
from Sect. 7.5, including the scientifically valid rounding and
number alignment. Furthermore, the HTML table is interac-
tive and supports filtering of columns and rows. HTML tables
produced by table-generator even allow generating
scatter and quantile plots on the fly for selected columns upon
user request (for an explanation of such plots, cf. Sects. 7.6
and 7.7, respectively). Examples of such tables can be found
on the supplementary web page.”

28 https://www.sosy-lab.org/research/benchmarking#tables

If a tool outputs further interesting data (e.g., for a verifier,
this could be time statistics for individual parts of the analy-
sis, number of created abstract states, or SMT queries), those
data can also be added to the generated tables if a function
is added to the tool-specific Python module which extracts
such data values from the output of the tool. All features of
the table (such as generating plots) are immediately available
for the columns with such data values as well.

6.4 Comparison with requirements for reliable
benchmarking

BENCHEXEC fulfills all requirements for reliable benchmark-
ing from Sect. 2. By using the kernel features for resource
management with cgroups that are described in Sect. 5.1,
BENCHEXEC ensures accurate measuring and limiting of
resources for sets of processes (Sect. 2.1), as well as reli-
able termination of processes (Sect. 2.2). The algorithms for
resource assignment that are implemented in benchexec
follow the rules of Sects. 2.3 and 2.4, and assign resources
to runs such that mutual influences are minimized as far
as possible on the given machine, while warning the user
if a meaningful resource allocation cannot be done (e.g., if
attempting to execute more runs than physical cores are avail-
able, or scheduling multiple runs on a CPU with active Turbo
Boost). However, note that our experiments from Sect. 4
show that performance influences from certain hardware
characteristics cannot be fully avoided even with the best
possible resource allocation if runs are executed in parallel.
Furthermore, because runexec alone handles only single
runs, it cannot enforce a proper resource allocation across
multiple runs, and users need to use either benchexec,
an own benchmarking framework, or manual interaction for
proper resource allocation across multiple runs. For swap-
ping (cf. Sect. 2.5), BENCHEXEC does what is possible
without root privileges: it enforces that swap memory is also
limited and measured if present, monitors swap usage, and
warns the user if swapping occurs during benchmarking.

Isolation of runs as described in Sect. 2.6 is implemented
in BENCHEXEC by executing each run in a container with
fresh namespaces. The PID namespace prevents the tool from
sending signals to other processes, and network and IPC
namespaces prevent communication with other processes
and systems. The mount namespace allows customizing the
file-system layout. This is used to provide a separate /tmp
directory for each run, as well as for transparently redirect-
ing all write accesses such that they do not have any effect
outside the container. If necessary, the user can choose to
weaken the isolation by allowing network access or write
access to some directories. Of course, it is then up to the user
to decide whether the incomplete isolation of runs will hinder
reliable benchmarking.

@ Springer
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Additionally, note that, while BENCHEXEC cannot ensure
that users always present benchmark results correctly (e.g.,
in publications), BENCHEXEC follows the recommendations
for valid presentation of results that we describe in Sect. 7,
i.e., it always uses SI units (cf. Sect. 7.2) and rounds values
to a fixed number of significant digits instead of decimal
places (cf. Sect. 7.3).

6.5 Discussion

We would like to discuss a few of the design decisions and
goals of BENCHEXEC.

BENCHEXEC aims at not impacting the external validity
of experiments by avoiding the use of an overly artifi-
cial environment (such as a virtual machine) or influencing
the benchmarked tool in any way (except for the speci-
fied resource limits and the isolation). For example, while
BENCHEXEC allocates resources such as CPU cores for runs
to avoid influences between parallel runs, it does not inter-
fere with how the assigned resources are used inside each
run. If tools with multiple threads or processes are bench-
marked, an appropriate resource allocation between these
threads and processes within the limits of the run remains
the responsibility of the user. The use of namespaces by
BENCHEXEC allows us to execute the tool as if it was the
only program on a machine with no network connection.
Both cgroups and namespaces are present and active on a
standard Linux machine anyway, and their use does not add
significant overhead.

We designed BENCHEXEC with extensibility and flexibil-
ity in mind. Support for new tools and result classifications
can be provided by adding a few lines of Python code. The
program runexec, which controls and measures resources
of the actual tool execution, can be used separately as a stand-
alone tool or a Python module, for example within other
benchmarking frameworks. Result data are present as CSV
tables, which allows processing with standard software.>’

We chose not to base BENCHEXEC on an existing container
framework such as LXC or Docker because, while these pro-
vide resource limitation and isolation, they typically do not
focus on benchmarking, and a fine-grained controlling of
resource allocation as well as measuring resource consump-
tion may be difficult or impossible. Furthermore, requiring a
container framework to be installed would significantly limit
the amount of machines on which BENCHEXEC can be used,
for example, because on many machines (especially in clus-
ters for high-performance computing) the Linux kernel is
too old, or such an installation is not possible due to admin-
istrative restrictions. Using cgroups and namespaces directly
minimizes the necessary version requirements, the installa-

29 For example, BENCHEXEC is used to automatically check for regres-
sions in the integration test-suite of CPACHECKER.
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tion effort, and the necessary access rights, and makes it easy
to use a fallback implementation without containers but still
with reliable resource measurements due to cgroups if nec-
essary.>? For example, using Docker would require to give
root-level access for the benchmarking machine to all users
who want to execute benchmarks.3! All features of Docker
that are necessary for reliable benchmarking (such as process
isolation) are available in BENCHEXEC as well and are imple-
mented in a way that after a one-time setup, they only need
a few specific privileges that can be granted individually and
without a security risk.

We use XML as input and output format because it is
a structured format that is readable and writable by both
humans and tools, and it is self-documenting. Since XML
supports comments, users can also use comments in the
benchmark-specification and table-definition files to docu-
ment their setup. We can store customized result data as well
as additional meta data in the result file. This allows docu-
menting information about the benchmarking environment,
which is important in scientific work because it increases the
replicability and trust of the results.

Python was chosen as programming language because it is
expected to be available on practically every Linux machine,
and it makes it easy to write the tool-specific module even for
people that do not have much experience in programming.

For the future, several research directions and extensions
of BENCHEXEC are possible. If necessary, one could work
on lifting some of the stated restrictions, and, for exam-
ple, implement techniques for reliable benchmarking of tools
with heavy I/O or use of GPU resources. BENCHEXEC relies
on the Linux kernel for the precision of its measurements. To
rule out remaining potential nondeterministic effects such
as the layout of memory allocations, some users might
want to increase the precision by running the same exper-
iment repeatedly. This needs to be done manually today,
but built-in support could be added, of course. Further-
more, we are interested in measuring the energy consumption
of benchmarks.

6.6 Encouraging replicable experiments

Reliable benchmarking results obtained by accurate and
precise measurements are necessary but not sufficient for
replicable experiments. The experimental setup also needs
to be documented precisely enough that the experiment
can be performed again by different people (cf. Sect. 7.1).

30 We successfully use BENCHEXEC on four different clusters, each
under different administrative control and with software as old as SuSE
Enterprise 11 and Linux 3.0, and on the machines of the student com-
puter pool of our department.

31 ¢f. https://docs.docker.com/engine/security/security/
#docker-daemon-attack-surface
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While careful documentation is ultimately the responsibil-
ity of the experimenter, BENCHEXEC is designed such that
it encourages and facilitates documentation. For example,
BENCHEXEC accepts the benchmark definition with all rel-
evant properties in a text file (XML-based), which can be
explained using comments, and which can be easily archived
using a version-control system. This strategy is used, for
example, by SV-COMP since 20162 [6]. BENCHEXEC is
also able to automatically store benchmark results in a GIT
repository. The result files do not only contain the raw mea-
surement values, but BENCHEXEC also documents important
information about the experimental setup, including the
hardware characteristics (CPU model and RAM size), the
operating-system version, values of environment variables,
the version number of the benchmarked tool (if available),
the resource limits, and the full command line of the exe-
cuted run. Taken together, these features conveniently allow
to document everything related to a series of experiments,
for example in a GIT repository, which could be shared with
collaborators, or even reviewers or the general public.

7 Presentation of results

After benchmarking results have been obtained, it is typ-
ically necessary to present them in a way that is both
scientifically valid as well as comprehensible for humans.
In this section, we first remind the reader of basic, but
important formal aspects, which need to be respected when
presenting measurement results. Following this, we discuss
different methods that are well-suited for comparing two or
more tools.

Note that all visualizations of benchmark results in this
paper (the plots from Sect. 4 as well as those in this sec-
tion) have been automatically generated from BENCHEXEC
result files using the IATEX package pgfplots.®? Doc-
umentation on how to achieve this is available in the
BENCHEXEC repository.>*

7.1 Required information

In order to make experiments replicable, some information
needs to be given about the benchmarking setup. While it is
in general infeasible to provide a complete specification of
the benchmarking machine (e.g., including versions of every
package on the system), 3> the information that is expected to

32 Cf. SV-COMP benchmark definitions at
https://github.com/sosy-lab/sv-comp

33 https://www.ctan.org/pkg/pgfplots
34 https://github.com/sosy-lab/benchexec/tree/master/contrib/plots

35 Providing a complete ready-to-use VM would achieve this, but this
is typically not suited for replicating performance results.

have the most significant potential impact on benchmarking
results needs to be given. We typically consider this to include

— CPU model and size of RAM,

— specified resource limits,

— name and version of OS,

— version of important software packages, such as the ker-
nel or runtime environments like the Java VM,

— version and configuration of the benchmarked tool(s),
and

— version of the benchmark set (input files).

For replicability it is further a requirement that the bench-
marked tool(s) and the input files are made available, e.g.,on a
supplementary web page, as additional material in the digital
library of the publisher,?® or in designated online reposito-
ries.>” We recommend to also make the raw benchmarking
results and used data-evaluation tools and scripts available
in order to make not only the experiment but also the data
analysis replicable.

7.2 Units

In general, it is recommended to use SI units and prefixes
wherever possible. In particular, special care needs to be
taken for values measured in bytes, such as memory or file
size. The prefixes kilo (k), mega (M), giga (G), etc. are
defined as decimal prefixes, i.e., they always represent a fac-
tor of 1000 compared to the next smaller prefix. For example,
one megabyte (MB) is exactly 1 000 000 bytes. It is incorrect
to use these prefixes as representation for a factor of 1024.
While this mistake would create an error of already 2.4% for
the prefix kilo, the error would increase to 4.9% for values
with the prefix mega, and to 7.4% for values with the pre-
fix giga, which would typically be regarded as a significant
systematic error.

Using the common decimal prefixes kilo, mega, etc. is pre-
ferred. In cases where the binary prefixes kibi, mebi, gibi, etc.
with factors of 1024 are more common (such as for amounts
of memory), it is also possible to use these prefixes, if the
correct symbols KiB, MiB, GiB, etc. are used. Note that for
the prefix kilo a lowercase letter is used as symbol, while for
all other prefixes that represent an integral factor (including
kibi) an uppercase letter is used.

36 Cf. the instructions of the publisher, for example
https://www.acm.org/publications/policies/dlinclusions,
http://www.ieee.org/documents/
ieee-supplemental-material-overview.zip,

and https://www.springer.com/gp/authors-editors/journal-author/
journal-author-helpdesk/preparation/1276#c40940

37 For example www.figshare.com or www.runmycode.org
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7.3 Significant digits

When writing about measurement results or presenting an
overview thereof'in tables, it is important to define the number
of significant digits to be used throughout the presentation.
In this context, it is of importance whether or not a data
item being presented is prone to errors in measurement or
not. For example, one can provide exact numbers for the
number of tasks solved by a tool, or for the number of lines
of an input file. Hence, these numbers can be given with an
arbitrary, but fixed number of digits. With exact numbers, it is
also acceptable to round data items to allow a more compact
presentation. For example, the length of an input program
measured in lines of code (LOC) could be given rounded to
1000 lines with the unit kLOC.

For inexact numbers and measures, for example obtained
by measuring time or memory consumption, this is differ-
ent. One has to define how precise a measurement is, and
show all results with a constant number of significant digits
according to the precision of the measurement. For exam-
ple, the maximal error of a measurement might be 1, or 0.1,
or 0.01%, which would lead to two, three, and four signifi-
cant digits, respectively. As a concrete example, consider a
time measurement with an assumed precision of 0.01%. If
the value 43.2109s is measured, this needs to be reported
with four significant digits as 43.21s, whereas the value
432.1098s would be shown as 432.1 s. Large and small
numbers (e.g., 43210 and 0.04321 s) need to be padded with
(insignificant) zero digits. Because from the number 43210 s
alone it is not clear whether it has 4 or 5 significant digits, the
number of significant digits needs to be explicitly stated for
each kind of measurement. This can be avoided by using sci-
entific notation (e.g., 4.321 x 104 s), but this might be harder
to interpret for human readers.

Note that the number of significant digits is independent
from the used unit, and the reported values always contain
exactly the same amount of information no matter in which
unit they are.

The naive approach of rounding all numbers to a fixed
amount of decimal places (e.g., 4.321 and 0.043s) should
not be used. First, for large numbers, this adds too many
digits with irrelevant noise and may lead the reader to wrong
conclusions about the precision of the measurement. Second,
for small numbers, this leads to a large rounding error that can
be orders of magnitudes larger than the measurement error.

7.4 Comparison of summarized results: scores and
rankings

It is often necessary to compare the achievements of two
or more different tools or tool configurations in a summa-
rized quantitative way. The way this can be done depends
on circumstances such as the research area and the goal

@ Springer

of the experimental evaluation. In the following, we dis-
cuss summarizing results for cases where the result of a
tool for an input file can be categorized as either correct,
wrong, or inconclusive (as is common in computer-aided ver-
ification), i.e., we ignore cases with quantitative tool results
(e.g., the quality of an approximation). Inconclusive results
are cases where the tool gave up, crashed, or exceeded its
resource limits.

In some communities, a wrong result is considered not
acceptable, for example in SAT-COMP [1]. In this case,
the tools with wrong results are excluded and tools without
wrong results can be compared by their number of correct
results. A slightly less strict alternative is to rank tools by
comparing first the number of wrong results, and in case of
ties the number of correct results. This is for example used
by SMT-COMP since 2012 [13].

Sometimes it is desired to define a single measure that
summarizes the number of correct and wrong results without
penalizing tools with wrong results too strongly, for example,
because all available tools potentially might produce some
wrong results. A scoring scheme can be used to achieve this
and calculate a single score for each tool. A typical scoring
scheme is as follows: positive points are given for each cor-
rect result, zero points are given for each inconclusive result,
and negative points are given for each wrong result [3]. The
amount of negative points per wrong result is larger than
the amount of positive points per correct result in order to
penalize wrong results. For example, in SV-COMP’17 one
or two points are given for each correct result and —16 or
—32 points are given for each wrong result. Note that in this
community, some tasks or results (safety proofs) are consid-
ered more difficult than others and lead to a higher number of
points, and some forms of incorrect results (unsound results)
are considered worse than others and lead to a higher penalty.

Because the definition of the scoring scheme heavily influ-
ences the ranking and presentation of the evaluation results, a
scoring scheme should be used only if it is generally accepted
by the community, for example by adoption in a competition
in this area. It is important to always also list the raw numbers
of correct and incorrect results (possibly further categorized
into unsound and incomplete results, for example) in addition
to the score.

7.5 Tables

Presenting and comparing numeric data using tables is a
straight-forward approach. Authors should respect the sug-
gestions made above regarding the selection of units and stick
to a fixed number of significant digits. The latter often results
in situations where different cells of the same column have
a different number of decimal places, which at first might
be counter-intuitive for a reader. If, however, the data in the
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Table 1 Example table with different number formats

fixed decimal right-aligned scientific decimal-
places notation aligned
(wrong!)
123 498.7600 123 500 1.235 x 10° 123 500
12 349.8760 12350 1.235 x 10* 12350
1234.9876 1235 1.235 x 10® 1235
123.4988 123.5 1.235 x 102 123.5
12.3499 12.35 1.235 x 10! 12.35
1.2350 1.235 1.235 x 10° 1.235
0.1235 0.1235 1.235 x 1071 .1235
0.0123 0.01235 1.235 x 1072 .01235
0.0012 0.001235 1.235 x 1073 .001235
0.0001 0.0001235 1.235 x 107* .0001235
0.0010 0.0009876 9.876 x 10~* .0009876
0.0099 0.009876 9.876 x 1072 .009876
0.0988 0.09876 9.876 x 10~ 2 .09876
0.9876 0.9876 9.876 x 10! .9876
9.8761 9.876 9.876 x 10° 9.876
98.7612 98.76 9.876 x 10" 98.76
987.6123 987.6 9.876 x 102 987.6

columns are aligned to the decimal point, the presentation
becomes intuitive at a glance, because the larger a value the
more it grows to the left, while the smaller a value the more
it shifts to the right. Using scientific notation would also be
a possibility, but again, comparing along a row or a column
is less intuitive, because all entries would have equal length.
Table 1 presents a comparison of the various formats. The first
column labeled “fixed decimal places” contains all numbers
rounded to the same number of decimal places. As described
above, this is incorrect due to rounding errors and measure-
ment noise. The remaining columns all show correct ways
of presenting measurement values (with four significant dig-
its), but vary according to their readability and specifically
with regard to the possibility of comparing the magnitude of
the numbers visually. Right-aligned numbers and scientific
notation can make it difficult to distinguish between values
such as 123.5 and 12.35, which appear similarly but differ by
an order of magnitude. For numbers aligned on the decimal
separator (as in the last column), the order of magnitude of
each value corresponds to its horizontal position within its
cell, which allows the reader to get a quick visual overview
of the results. Note that we drop the leading zero for values
smaller than 1 such that this effect is increased. The recom-
mended rounding and alignment can be produced in IATEX
tables automatically with packages such as siunitx3®
and pgfplotstable.’® The latter even supports creat-
ing correctly formatted tables directly from raw CSV files
in one step.

Of course, due to space issues, tables can only be used for
a small number of results. For larger numbers of results, such
as for hundreds or thousands of input files, only summarized

38 hitps://www.ctan.org/pkg/siunitx
39 https://www.ctan.org/pkg/pgfplotstable

data can be shown, and the full set of results should be made
available in some other form, e.g., on a supplementary web
page or as additional material in a digital library. In addition
to showing summarized data, a further possibility is to also
show a selection of the most interesting results, such as the
n best and worst results*?, and to use plots to visualize a large
number of results. The benefit of plots is that for humans this
form of presentation usually provides a quick understanding
of the data. The downside is that small differences between
results are harder or impossible to identify. However, if com-
paring a set of hundreds or thousands of runs, such detail
needs to be sacrificed and abstracted anyway. Moreover, a
plot, quite literally, scales better than a table, and is therefore
more suitable for comparisons of large data sets.

7.6 Scatter plots

For comparing two columns of related results, for example
time results for two different tools for a common set of input
files, scatter plots can be used to give a good overview. Scat-
ter plots are drawn onto a two-dimensional coordinate system
with the two axes representing the two result columns (typi-
cally of the same unit and range). For each input file, there is
one data point with the result of the first tool or configuration
as its x-value and the result of the other tool or configuration
as its y-value. An example scatter plot with CPU-time results
for two different tools can be seen in Fig. 8. We highlighted
the data point at (16, 1.1), whose meaning is that there exists
an input file for which Tool 1 needed 16s of CPU time and
Tool 2 needed 1.1s.

In a scatter plot, data points on the diagonal show cases
where both tools have the same value, data points in the
lower-right half of the plot (below the diagonal) show cases
where the value of the tool shown on the y-axis is lower,
and data points in the upper-left half of the plot (above the
diagonal) show cases where the value of the tool shown on
the x-axis is lower, and the distance of a data point from
the diagonal correlates to the difference between the results.
This allows the reader to easily get a quick overview of the
results by looking at the distribution of the data points across
the two halves. To further aid this, the diagonal and further
parallel lines (for example, the functions y = x + 10 and
y =x—10,0ory = 10x and y = 7; on a logarithmic plot)
can be added to the plot.

Compared to a table, scatter plots have the disadvantage
that it is not possible to see which input file each data point
represents. It is also not possible to show results for input files
for which one of the results is missing. Data points where at
least one component corresponds to a wrong or inconclusive
answer also need to be omitted. Otherwise, it could hap-

40 For examples, cf. Tables 4 and 5 in [9]
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Fig. 8 Example scatter plot, data taken from two tools of category
“DeviceDrivers64” of SV-COMP’ 15 [5]

pen that in a scatter plot of time results a tool with many
fast but wrong results or fast crashes would visually appear
“better” than another tool with slower but correct results,
which should be avoided. An exception to this rule are time-
out results in scatter plots of time results, which should be
shown with a time equal to the time limit and lead (if present
in significant numbers) to characteristic clusters at the top
or right of the plot. Thus, scatter plots are especially suited
for cases where the number of wrong or inconclusive results
(except timeouts) is not significant. In other cases it must be
clear that the plot shows only a subset of the results and that
this can lead to a skewed picture (e.g., if one tool is partic-
ularly good for input files for which the other tool crashes,
these data points are missing).

Scatter plots support the comparison of only two result
columns. More information can sometimes be added by col-
oring each data point accordingly. However, care should be
taken to ensure that crucial information is still available in
black-and-white printouts. One use case for a colored scatter
plot is to indicate how many results each data point repre-
sents, if for example the axes are discrete and there would
be cases with many data points at the same coordinates. An
example for such a plot can be seen in Fig. 9. For comparing
more results, either several scatter plots or different forms of
plots should be used.

7.7 Quantile plots
Quantile plots (also known as cactus plots) are plots where

the data points represent which quantile (x-value) of the
runs need less than the given measure (y-value). Technically,
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Fig. 9 Example scatter plot with color of data points indicating the
number of runs each data point represents

each graph is produced by sorting the data points accord-
ing to their y-value. This leads to a plot where each graph
represents the performance of one tool and the graph is mono-
tonically increasing. Only data points for correct results are
shown, and quantile plots are typically used to present time
results. Figure 10 shows an example quantile plot with the
results of eight tools for 46 input files. The highlighted data
point at (21, 5.4) means that Tool 5 produced 21 correct
results in at most 5.4 s each and took longer than 5.4 s for its
remaining results.

In a quantile plot, the right-most x-value of each graph cor-
responds to the number of correct results that the respective
tool produced. The area under each graph roughly indicates
the sum of the run times for all correct results of the tool.
Thus, in general, a tool could be considered “better” the
further to the right its graph stretches and the lower it is.
Furthermore, the slope of a graph may indicate how the tool
scales for more difficult tasks. Sometimes, the shape of a
graph also gives some further indications. For example, the
fact that a tool employs a sequential combination of different
strategies and switches strategies after some internal time
limit is often recognizable by a characteristic kink in the
graph at that time limit. The y-value of the left-most data
point of a graph often shows the startup time of the tool.
Tools that use a virtual machine, e.g., tools programmed in
Java, typically have a slight offset here.

Compared to a scatter plot, quantile plots have the advan-
tage that they can visualize an arbitrary number of result
columns, and that data points for all correct results of each
tool can be shown (and not only for the intersection of cor-
rect results), which means that it also shows the effectiveness
of each tool and not only its (partial) efficiency. The disad-
vantage, however, is that there is no relation between the
different graphs and no information regarding how the tools
compare on a specific input file. In fact, with a quantile plot
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Fig. 10 Example quantile plot, data taken from category “Simple* of
SV-COMP’15 [5]

it could well happen that the graphs of two tools are similar
or identical, but there is not a single input file for which the
two tools produced a similar result.

7.8 Variants of quantile plots

While quantile plots show the number of correct results, they
still lack the number of incorrect results. A tool with many
correct and incorrect results could misleadingly appear “bet-
ter” than a tool with a lower number of correct results and no
incorrect results. This can be avoided by shifting the graph of
each tool to the left by the amount of incorrect results. Now
the number of incorrect results is visible in the plot as the
negative x-offset of the graph, the number of correct results
is visible as the x-length of the graph, and their difference is
visible as the x-value of the right-most data point. However,
this gives the visual indication that an incorrect result and a
correct result are somehow of similar importance and cancel
each other out, which may not be desired.

This problem can be avoided with a score-based quantile
plot as introduced by SV-COMP’ 13 [4], if a scoring scheme
for summarized results is available (cf. Sect. 7.4). In such a
plot, a data point (x, y) means that the sum of the scores for
all incorrect results and the sum of the scores of all correct
results that were faster than y seconds is x. Thus, for example,
a correct result with score 2 makes the graph stretch further
to the right (and appear “better””) than a correct result with
the same time but score 1.

In a score-based quantile plot, the accumulated score for
all incorrect results is visible as the graph’s left-most x-value,
the accumulated score for all correct results is visible as the
x-length of the graph, and the total score for all results is
visible as the x-value of the right-most data point. The general

1000

100

T T TTTTTT
Ll

—e—Tool 1 ||
—m— Tool 2
—e— Tool 3
—~— Tool 4
—+— Tool 5 ]
--e-Tool 6
- & -Tool 7

-®-Tool 8
! ! ! —]

40 60

—_
o

T T TLTTT

CPU time (s)

T ITII

(25 points, 5.4 s)

T T 11710
T TTTIIT

| T
w
(=)
o
[\)
(=)

Accumulated score

Fig. 11 Example score-based quantile plot, data taken from category
“Simple* of SV-COMP’15 [5]

intuition that a graph that is lower and further to the right is
“better” still holds. Anideal tool with no wrong results would
have its graph start with a positive x-offset.

As example, Fig. 11 shows a score-based quantile plot
for the same results as Fig. 10. The highlighted data point
corresponds to the same result in both figures, but in Fig. 11
it is drawn at (25, 5.4) because, for the 21 correct results
produced by Tool 5 in at most 5.4, there were 25 points
awarded (and the tool did not produce any wrong answers).
This shows how the relative weighting of the results affects
the graphs. The influence of incorrect results can be seen,
for example, at the graphs of Tool 2, Tool 4, and Tool 6,
especially when compared with Tool 3 (cf. the right end of
their graphs).

8 Related work

Replicable experiments are an important topic in computer
science in general. For example, the ACM has developed a
policy on “Result and Artifact Review and Badging” *! with
the goal of standardizing artifact evaluation, and labels arti-
cles that support experiment replication with special badges.
This work was inspired by effort in this direction in the SIG-
PLAN and SIGSOFT communities.*?

Besides the issues that we discussed in this paper, there
are more sources of nondeterministic effects that may influ-
ence performance measurements in our target domain. For
example, the memory layout of the process can affect per-
formance due to differences in cache alignment and cache

41 https://www.acm.org/publications/policies/artifact-review-badging

42 http://evaluate.inf.usi.ch/artifacts/aca
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hit rates [15], and the memory layout can be influenced by
factors such as symbol names [16,21], environment variables
and order of objects during linking [24], and nondeterminis-
tic memory-allocation strategies of the OS [18].
Benchmarking solutions are also developed in other com-
munities. For example, the MININET HI- FI project [17]
provides a framework for experiments in computer network-
ing. It emulates a virtual network on a single machine by
using cgroups and namespaces to setup and control a set of
virtual hosts and network connections between them.

8.1 Benchmarking strategies

Several strategies have been proposed for dealing with
nondeterministic effects that influence measurements by exe-
cuting runs several times. The execution-time-measurement
protocol (EMP) [30] was designed for improving the preci-
sion of time measurements by using a sequence of repeated
executions and measurements, for example for avoiding the
influence of background processes of the operating sys-
tem. Furthermore, the authors of EMP also identified other
sources of measurement errors that the administrator of the
benchmarking machine should address. For example, time
measurements (even for CPU time) can be imprecise on
machines without time synchronization via NTP.

The authors of DATAMILL [25] propose to make bench-
marking more reliable by explicitly varying as many hard-
ware and software factors as possible in a controlled manner
while benchmarking, e.g., the hardware architecture, CPU
model, memory size, link order, etc. To do so, they rely on a
diverse set of worker machines, which are rebooted for each
benchmark run into a specific OS installation.

In general, these strategies focus on ruling out nondeter-
ministic measurement noise, but do not handle some of the
sources of measurement errors identified in this work, such as
the CPU-time measurement of tools with several processes,
and may thus still produce arbitrarily large measurement
errors. On the other hand, BENCHEXEC aims at ruling out
such qualitative measurement errors, and relies on the Linux
kernel for precise and accurate measurements, but does not
increase the precision in case of nondeterministic effects
that it cannot control, such as memory-allocation strate-
gies. If such effects are present, users can of course increase
the precision by executing benchmarks several times with
BENCHEXEC and aggregating the results. In the future, bench-
marking with cgroups and namespaces could (and should)
be combined with one of the strategies described above to
address the respective problem. For example, BENCHEXEC
can serve as low-level measurement tool in a distributed
framework such as DATAMILL, or EMP could be imple-
mented on top of BENCHEXEC.
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8.2 Benchmarking tools

In the verification community, there exist several benchmark-
ing tools that have the same intent as our benchmarking
framework. However, as of June 2017, no tool we inves-
tigated fulfills all requirements for reliable benchmarking,
which are presented in Sect. 2. In the following, we discuss
several existing benchmarking tools in their latest versions as
of June 2017. Our selection is not exhaustive, because there
exist many such tools.

The tool RUNLIM,43 in version 1.10, allows benchmarking
an executable and limits both CPU time and memory. It sam-
ples time and memory consumption recursively for a process
hierarchy, and thus cannot guarantee accurate measurements
and limit enforcement. The tool cannot terminate a process
hierarchy reliably, because it only terminates the main pro-
cess with kill. The tool PYRUNLIM,** a port of RUNLIM
to the Python programming language, has a few more fea-
tures, such as setting the CPU affinity of a process, and aims
at killing process hierarchies more reliably. However, in the
latest version 2.15,% it does not use cgroups and also takes
sample measurements recursively over process hierarchies,
which —like all sampling-based methods— is not accurate.

The CProver Benchmarking Toolkit (CPBM),* avail-
able in version 0.5, ships helpers for verification-task patch
management and result evaluation, and also supports bench-
marking. However, the limits for CPU time and memory
are enforced by ul imit,*” and thus, the benchmarking is
not accurate.

Furthermore, none of the tools mentioned so far attempts
to isolate independent benchmark runs from each other.
This could be done in addition to using one of these tools,
e.g., by executing each run under a fresh user account.
This would require a substantial amount of additional
implementation effort.

The Satisfiability Modulo Theories Execution Service
(SMT-Exec)*® was a solver execution service provided by
the SMT-LIB initiative. For enforcing resource limits, SM'T-
Exec used the tool TREELIMITEDRUN,* which uses the
system calls wait and setrlimit, and thus, is prone to
the restrictions explained in Sect. 3.

StarExec [29], a web-based service developed at the Uni-
versities of Jowa and Miami, is the successor of SMT-Exec.
The main goal of StarExec is to facilitate the execution of

43 http://fmv.jku.at/runlim
4 http://alviano.net/2014/02/26

45 GIT revision b9b2£11 from 2017-05-02 on
https://github.com/alviano/python/tree/master/pyrunlim

46 http://www.cprover.org/software/benchmarks
47 ¢f. verify. sh in the CPBM package
48 http://smt-exec.org

49 http:/smtexec.cs.uiowa.edu/TreeLimitedRun.c
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logic solvers. The Oracle Grid Engine takes care of queuing
and scheduling runs. For measuring CPU time and memory
consumption, as well as enforcing resource limits, StarExec
delegates to RUNSOLVER™ [27], available in version 3.3.5,
which also is prone to the limitations from Sect. 3.

The Versioning Competition Workflow Compiler
(VCWCQ) [12] is an effort to create a fault-tolerant competi-
tion platform that supports competition maintainers in order
to minimize their amount of manual work. This project, in
the latest development version,’! defines its own benchmark-
ing container, and uses sudo and schroot>? for executing
each run in a fresh environment. However, the setup for
this needs root access to the machine, and all parallel runs
are executed under the same user account, meaning that an
executed process can still see and influence processes of
parallel runs. Furthermore, VCWC relies on ulimit to
enforce time limits. If the administrator of the benchmarking
machine manually designed and created a cgroup hierar-
chy that enforces an appropriate partitioning of CPU cores
and memory nodes, and defined a memory limit, VCWC
can execute runs within these existing cgroups, but it cannot
automatically create the appropriate cgroups, as BENCHEXEC
does. Furthermore, measurement of CPU time and memory,
as well as termination of processes, is not implemented with
cgroups, and hence, may fail.

The tool BENCHKIT™? [22], available in version 1.1, is
also used for competitions, where participants submit a
virtual-machine (VM) image with their tool and all necessary
software. BENCHKIT executes the tool within an instance of
this VM and measures the resource usage of the tool and the
OS together in the VM. Our framework executes all tools
natively on the host system and allows precise measurement
of the resource consumption of the tool in isolation, with-
out influence from factors such as the VM’s OS. BENCHKIT
measures CPU time and memory consumption of the VM
using sampling with the performance monitoring tool SYS-
STAT>*, which is available in version 11.4.4. BENCHKIT does
not ensure that the CPU cores and the memory for a run are
assigned such that hyperthreading and NUMA are respected.
For each single run with BENCHKIT, i.e., each pair of tool
and input file, a new VM has to be booted, which on aver-
age takes 40s to complete [22]. Execution of a tool inside
a VM can also be slower than directly on the host machine.
Our approach based on cgroups and containers has a simi-
lar effect of isolating the individual runs and their resource

50 http://www.cril.univ-artois.fr/~roussel/runsolver

31 GIT revision 9358031 from 2013-09-13 on
https://github.com/tkren/vewc

32 A utility for executing commands in a chroot environment, cf.
http://linux.die.net/man/1/schroot

33 http://www.cosyverif.org/benchkit.php
54 http://sebastien.godard.pagesperso-orange.fr

usage, but comes at practically zero overhead. Our tool imple-
mentation was successfully used in SV-COMP’17, which
consisted of more than 400 000 runs, plus an uncounted num-
ber of runs for testing the setups of the participating tools [7].
An overhead of 40s per run would have required addi-
tional 190 CPU days for the main competition run alone, a
prohibitive overhead.

9 Conclusion

The goal of this work is to establish a technological foun-
dation for performance evaluation of tools that is based on
modern technology and makes it possible to reliably measure
and control resources in a replicable way, in order to obtain
scientifically valid experimental results. First, we established
reasons why there is a need for such a benchmarking technol-
ogy in the area of automatic verification. Tool developers, as
well as competitions, need reliable performance measure-
ments to evaluate research results. Second, we motivated
and discussed several requirements that are indispensable
for reliable benchmarking and resource measurement, and
identified limitations and restrictions of existing methods.
We demonstrated the high risk of invalid measurements if
certain technical constraints are not taken care of. Bench-
marking problems have been detected in practice, and nobody
knows how often they went unnoticed, and how many wrong
conclusions were drawn from flawed experiments. Third,
we summarized requirements and discussed possibilities
for presenting benchmarking results in a scientifically valid
and comprehensible way, for example using different kinds
of plots.

In order to overcome the existing deficits and establish
a scientifically valid method, we presented our lightweight
implementation BENCHEXEC, which is built on the concept
of Linux cgroups and namespaces. The implementation ful-
fills the requirements for reliable benchmarking, since it
avoids the pitfalls that existing tools are prone to. This is
a qualitative improvement over the state of the art, because
existing approaches may produce arbitrarily large (system-
atic and random) measurement errors, e.g., if subprocesses
are involved. BENCHEXEC is not just a prototypical imple-
mentation. The development of BENCHEXEC was driven
by the demand for replicable scientific experiments in our
research projects (for the CPACHECKER project, we execute
about 3 million tool runs per month in our research lab) and
during the repeated organization of SV-COMP. Especially
in the experiments of SV-COMP, we learned how difficult
it can be to accurately measure resource consumption for a
considerable zoo of tools that were developed using differ-
ent technologies and strategies. BENCHEXEC makes it easy to
tame the wildest beast and was successfully used to bench-
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mark 32 tools in SV-COMP’ 17 [7], with all results approved
by the authors of these tools.
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Appendix A: Machine architectures with
hyperthreading and nonuniform memory access

As indication how complex and divergent today’s machines
can be, we show two exemplary machine architectures, which
are shown in Figs. 12 and 13. In the figures, each CPU is
represented by a node labeled with “Socket” and the physical
package id, each physical CPU core by a node labeled with
“Core” and the core id, and each processing unit by a node
labeled with “PU” and the processor id. A processing unit is
what a process running under Linux sees as a core. Nodes
whose label starts with “L” represent the various caches (“L”
for level). Contiguous regions of memory are represented
by nodes labeled with “NUMANode” and the node id, and
each memory region is grouped together with the CPU cores
that it belongs to in a green unlabeled node. The numeric
ids in the figures are those that the Linux kernel assigns to
the respective unit. The numbering scheme is explained in
Sect. 3.4. Such figures can be created with the tool 1stopo
from the Portable Hardware Locality (hwloc) project.>®
Both examples are systems with a NUMA architecture.
Figure 12 shows a system with two AMD Opteron 6380 16-
core CPUs with a total of 137 GB of RAM. On this CPU,
always two virtual cores together form what AMD calls a
“module,” a physical core that has separate integer-arithmetic

33 https://github.com/sosy-lab/benchexec#authors

36 https://www.open-mpi.org/projects/hwloc
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units and level-1 data cache for each virtual core, but shared
floating-point units, level-1 instruction cache, and level-2
cache. The cores of each CPU are split into two groups of
eight virtual cores. The memory of the system is split into
four regions, each of which is coupled with one group of
cores. This means that, for example, core 0 can access the
memory of NUMANode 0 directly and thus fast, whereas
accesses to NUMANode 1 would be indirect and thus slower,
and accesses to NUMANode 2 and 3 would be even slower
as they need to be done via inter-CPU communication chan-
nels. Note that on this machine, the two virtual cores of each
physical core (“module’) got adjacent processor ids and dif-
ferent core ids assigned by the Linux kernel, whereas virtual
cores with the same core id on the same CPU actually belong
to different physical cores.

Figure 13 shows a system with two Intel Xeon E5-2650 v2
eight-core CPUs with a total of 135 GB of RAM (caches
omitted for space reasons). This CPU model has hyperthread-
ing, and thus there are always two virtual cores that share both
integer-arithmetic and floating-point units and the caches of
one physical core. The memory in this system is also split into
two memory regions, one per CPU. Note that the numbering
system differs from the other machine: the virtual cores of
one physical core have the same core id, which uniquely iden-
tifies a physical core on a CPU here. The processor ids for
virtual cores, however, are not consecutive but jump between
the CPUs.

Note that both presented systems could appear equal at
a cursory glance, because they both have the same number
of processing units and approximately the same amount of
RAM. However, they differ in their architecture and (depend-
ing on the workload) could deliver substantially different
performance even if running at the same frequency.
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Fig. 12 Example for a machine with a NUMA architecture: 2 AMD Opteron 6380 CPUs, each with two groups of four modules of two cores and

69 GB (64 GiB) of RAM
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Fig. 13 Example for a machine with a NUMA architecture: 2 Intel Xeon E5-2650 v2 CPUs, each with eight physical cores with hyperthreading

and 68 GB (63 GiB) of RAM
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Appendix B: Listings

1 from benchexec.runexecutor import RunExecutor

> executor = RunExecutor ()

3 result = executor.execute_run (

4 args = [<TOOL_CMD>],

5 output_filename = ’output.log’,

6 hardtimelimit = 100,

7 memlimit = 16%x1000%1000x1000,

8 cores = list (range (0,8)) + list (range(16,24)),
9 memory_nodes = [0])

Listing 1: Example for using module runexec from a Python program

1 <?xml version="1.0"7?>
» <!DOCTYPE benchmark PUBLIC

3 "+//IDN sosy-lab.org//DTD BenchExec benchmark 1.9//EN"

4 "https://www.sosy—lab.org/benchexec/benchmark-1.9.dtd" >
5

¢ <!—— Example file for benchmark definition , using tool "cpachecker”
7 with CPU time limit, memory limit, and 4 CPU cores. —>
s <benchmark tool="cpachecker"

9 timelimit="900 s" memlimit="8000 MB" cpuCores="4">
10

1" </—— Define two different configurations to benchmark,

P with different command—line options. —>

13 <rundefinition name="predicateAnalysis">

14 <option name="-predicateAnalysis"/>

15 </rundefinition>

16

17 <rundefinition name="valueAnalysis">

18 <option name="-valueAnalysis"/>

19 </rundefinition>

20

21 </—— Global command—line options for all configurations. —>
2 <option name="-heap">7000M</option>

3 <option name="-noout"/>

25 <!—— Define which input files should be used for benchmarking

2 (two groups of files declared in separate files ). —>

27 <tasks name="ControlFlowInteger">

28 <includesfile>programs/ControlFlowInteger.set</includesfile>
29 </tasks>

30

31 <tasks name="DeviceDrivers64">

2 <includesfile>programs/DeviceDrivers64.set</includesfile>

3 <]—— These files need a special command—line option: —>

34 <option name="-64"/>

35 </tasks>

37 </—— Use an SV-COMP property file as specification

38 (file ALL.prp in the same directory as each input file ). —>
3 <propertyfile>${inputfile_path}/ALL.prp</propertyfile>

o </benchmark>

Listing 2: Example for an XML file as input for program benchexec,
defining a benchmark of two configurations of a tool on two sets of files

@ Springer
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