
.

Proc. TACAS 2017, c©Springer

Software Verification with Validation of Results
(Report on SV-COMP 2017)

Dirk Beyer

LMU Munich, Germany

Abstract. This report describes the 2017 Competition on Software Veri-
fication (SV-COMP), the 6th edition of the annual thorough comparative
evaluation of fully-automatic software verifiers. The goal is to reflect the
current state of the art in software verification in terms of effectiveness
and efficiency. The major achievement of the 6th edition of SV-COMP
is that the verification results were validated in most categories. The
verifiers have to produce verification witnesses, which contain hints that
a validator can later use to reproduce the verification result. The an-
swer of a verifier counts only if the validator confirms the verification
result. SV-COMP uses two independent, publicly available witness val-
idators. For 2017, a new category structure was introduced that now
orders the verification tasks according to the property to verify on the
top level, and by the type of programs (e.g., which kind of data types are
used) on a second level. The categories Overflows and Termination were
heavily extended, and the category SoftwareSystems now contains also
verification tasks from the software system BusyBox. The competition
used 8 908 verification tasks that each consisted of a C program and a
property (reachability, memory safety, termination). SV-COMP 2017 had
32 participating verification systems from 12 countries.

1 Introduction

Software verification is an increasingly important research area, and the annual
Competition on Software Verification (SV-COMP) 1 is the showcase of the state
of the art in the area, in particular, of the effectiveness and efficiency that is
currently achieved by tool implementations of the most recent ideas, concepts,
and algorithms for fully-automatic verification. Every year, the SV-COMP project
consists of two parts: (1) The collection of verification tasks and their partition
into categories has to take place before the actual experiments start, and requires
quality-assurance work on the source code in order to ensure a high-quality
evaluation. It is important that the SV-COMP verification tasks reflect what
the research and development community considers interesting and challenging
for evaluating the effectivity (soundness and completeness) and efficiency (per-
formance) of state-of-the-art verification tools. (2) The actual experiments of
the comparative evaluation of the relevant tool implementations is performed

1 https://sv-comp.sosy-lab.org

https://sv-comp.sosy-lab.org

by the organizer of SV-COMP. Since SV-COMP shall stimulate and showcase
new technology, it is necessary to explore and define standards for a reliable and
reproducible execution of such a competition: we use BenchExec [10], a modern
framework for reliable benchmarking and resource measurement, to run the
experiments, and verification witnesses [7, 8] to validate the verification results.

As for every edition, this SV-COMP report describes the (updated) rules
and definitions, presents the competition results, and discusses other interesting
facts about the execution of the competition experiments. Also, we need to
measure the success of SV-COMP by evaluating whether the main objectives of
the competition are achieved (list taken from [5]):
1. provide an overview of the state of the art in software-verification technology

and increase visibility of the most recent software verifiers,
2. establish a repository of software-verification tasks that is publicly available

for free use as standard benchmark suite for evaluating verification software,
3. establish standards that make it possible to compare different verification

tools, including a property language and formats for the results, and
4. accelerate the transfer of new verification technology to industrial practice.
As for (1), there were 32 participating software systems from 12 countries,
representing a broad spectrum of technology (cf. Table 4). SV-COMP is considered
an important event in the research community, and increasingly also in industry.
This year, SV-COMP for the first time had two participating verification systems
from industry. As for (2), the total set of verification tasks increased in size
from 6 661 to 8 908. Still, SV-COMP has an ongoing focus on collecting and
constructing verification tasks to ensure even more diversity. Compared to the last
years, the level and amount of quality-assurance activities from the SV-COMP
community increased significantly, as witnessed by the issue tracker 2 and by the
pull requests 3 in the GitHub project. As for (3), the largest step forward was to
apply an extension of the standard witness language as a common, exchangeable
format to correctness witnesses as well this year (violation witnesses have been
used before). This means, if a verifier reports False (claims to know an error path
through the program that violates the specification), then it produces a violation
witness; if a verifier reports True (claims to know a proof of correctness), then
it produces a correctness witness. The two points of the SV-COMP scoring
schema for correct answers True are assigned only if the correctness witness was
confirmed by a witness validator, i.e., a proof of correctness could be reconstructed
by a different tool. As for (4), we continuously received positive feedback from
industry.

Related Competitions. It is well-understood that competitions are an important
evaluation method, and there are other competitions in the field of software
verification: RERS 4 [20] and VerifyThis 5 [22]. While SV-COMP performs repli-
cable experiments in a controlled environment (dedicated resources, resource
limits), the RERS Challenges give more room for exploring combinations of

2 https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
3 https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr 4 http://rers-challenge.org
5 http://etaps2016.verifythis.org

https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr
http://rers-challenge.org
http://etaps2016.verifythis.org

interactive with automatic approaches without limits on the resources, and the
VerifyThis Competition focuses on evaluating approaches and ideas rather than
on fully-automatic verification. The termination competition termCOMP 6 [16]
concentrates on termination but considers a broader range of systems, including
logic and functional programs. A more comprehensive list of other competitions
is provided in the report on SV-COMP 2014 [4].

2 Procedure

The overall competition organization did not change in comparison to the past
editions [2, 3, 4, 5, 6]. SV-COMP is an open competition, where all verification
tasks are known before the submission of the participating verifiers, which is
necessary due to the complexity of the language C. During the benchmark
submission phase, new verification tasks were collected and classified, during
the training phase, the teams inspected the verification tasks and trained their
verifiers (also, the verification tasks received fixes and quality improvement), and
during the evaluation phase, verification runs were preformed with all competition
candidates, and the system descriptions were reviewed by the competition jury.
The participants received the results of their verifier directly via e-mail, and after
a few days of inspection, the results were publicly announced on the competition
web site. The Competition Jury consisted again of the chair and one member of
each participating team. Team representatives of the jury are listed in Table 3.

3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verification
run is a non-interactive execution of a competition candidate (verifier) on a single
verification task, in order to check whether the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:
True: The property is satisfied (no path exists that violates the property), and

a correctness witness is produced that contains hints to reconstruct the proof.
False: The property is violated (there exists a path that violates the property),

and a violation witness is produced that contains hints to replay the error
path to the property violation.

Unknown: The tool cannot decide the problem, or terminates abnormally, or
exhausts the computing resources time or memory (the competition candidate
does not succeed in computing an answer True or False).

The component witness [7, 8] was this year for the first time mandatory for both
answers True or False; a few categories were excluded from validation if the
validators did not sufficiently support a certain kind of program or property. We
used the two publicly available witness validators CPAchecker and UAutomizer.

6 http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition

Arrays

Bit Vectors

Heap Data Structures

Integers and Control Flow

Software Systems

Arrays

ArraysReach

ArraysMemSafety

Bit Vectors

BitVectorsReach

Overflows

Heap Data Structures

HeapReach

HeapMemSafety

Floats

Integers and Control Flow

ControlFlow

Simple

ECA

Loops

Recursive

ProductLines

Sequentialized

Termination

Concurrency

Software Systems

DeviceDriversLinux64

Overall

Overflows

MemorySafety

ReachSafety

SoftwareSystems

Termination

ReachSafety

ArraysReach

BitVectorsReach

ControlFlow

ECA

Floats

HeapReach

Loops

ProductLines

Recursive

Sequentialized

MemorySafety

ArraysMemSafety

HeapMemSafety

LinkedLists

Other

ConcurrencySafety

Overflows

BitVectors

Other

Termination

Main-ControlFlow

Main-Heap

Other

SoftwareSystems

BusyBox MemorySafety

BusyBox Overflows

DeviceDriversLinux64 Safety

Overall

Fig. 1: Categories; left: SV-COMP 2016; right: SV-COMP 2017; category Falsifi-
cation contains all verification tasks of Overall without Termination

Table 1: Properties used in SV-COMP 2017 (cf. [5] for more details)
Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.

time is measured as consumed CPU time until the verifier terminates, including
the consumed CPU time of all processes that the verifier started [10]. If time is
equal to or larger than the time limit (15min), then the verifier is terminated
and the answer is set to ‘timeout’ (and interpreted as Unknown).

Categories. The collection of verification tasks is partitioned into categories.
A major update was done on the structure of the categories, in order to support
various extensions that were planned for SV-COMP 2017. For example, the
categories Overflows and Termination were considerably extended (Overflows
from 12 to 328 and Termination from 631 to 1 437 verification tasks). Figure 1
shows the previous structure of main and sub-categories on the left, and the
new structure is shown on the right. The guideline is to have main categories
that correspond to different properties and sub-categories that reflect the type of
program. The goal of the category SoftwareSystems is to complement the other
categories (which sometimes contain small and constructed examples to show
certain verification features) by large and complicated verification tasks from real
software systems (further structured according to system and property to verify).
The category assignment was proposed and implemented by the competition
chair, and approved by the competition jury. SV-COMP 2017 has a total of
eight categories for which award plaques are handed out, including the six main
categories, category Overall, which contains the union of all categories, and
category Falsification. Category Falsification consists of all verification tasks with
safety properties, and any answers True are not counted for the score (the goal
of this category is to show bug-hunting capabilities of verifiers that are not able
to construct correctness proofs). The categories are described in more detail on
the competition web site.7

7 https://sv-comp.sosy-lab.org/2017/benchmarks.php

https://sv-comp.sosy-lab.org/2017/benchmarks.php

Table 2: Scoring schema for SV-COMP 2017
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Correct program reported to satisfy property
True correct +1 Correct program reported to satisfy property,
unconfirmed but the witness was not confirmed by a validator

True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2: Visualization of the scoring schema for the reachability property

Properties and Their Format. For the definition of the properties and the
property format, we refer to the previous competition report [5]. All specifications
are available in the main directory of the benchmark repository. Table 1 lists the
properties and their syntax as overview.

Evaluation by Scores and Run Time. The scoring schema of SV-COMP 2017
is similar to the previous scoring schema, except that results with answer True
are now assigned two points only if the witness was confirmed by a validator,
and one point is assigned if the answer matches the expected result but the
witness was not confirmed. Table 2 provides the overview and Fig. 2 visually
illustrates the score assignment for one property. The ranking is decided based on
the sum of points (normalized for meta categories) and for equal sum of points
according to success run time, which is the total CPU time over all verification
tasks for which the verifier reported a correct verification result. Opt-out from
Categories and Score Normalization for Meta Categories was done as described
previously [3] (page 597).

4 Reproducibility

It is important that the SV-COMP experiments can be independently replicated,
and that the results can be reproduced. Therefore, all major components that are
used for the competition need to be publicly available. Figure 3 gives an overview
over the components that contribute to the reproducible setup of SV-COMP.

(a) Verification Tasks
(public git: 'svcomp17')

(e) Verification Run
(BenchExec 1.10)

(b) Benchmark Definitions
(public git: 'svcomp17')

(c) Tool-Info Modules
(BenchExec 1.10)

(d) Verifier Archives
(public web: sha1hash)

FALSE UNKNOWN TRUE(f) Violation
Witness

(g) Correctness
Witness

Fig. 3: Setup: SV-COMP components that support reproducibility

Repositories for Verification Tasks (a), Benchmark Definitions (b),
and Tool-Information Modules (c). The previous competition report [6]
describes how replicability is ensured by making all essential ingredients available
in public archives. The verification tasks (a) are available via the tag ‘svcomp17’
in a public Git repository.8 The benchmark definitions (b) define for each verifier
(i) on which verification tasks the verifier is to be executed (each verifier can
choose which categories to participate in) and (ii) which parameters need to
be passed to the verifier (there are global parameters that are specified for all
categories, and there are specific parameters such as the bit architecture). The
benchmark definitions are available via the tag ‘svcomp17’ in another public Git
repository.9 The tool-information modules (c) ensure, for each verifier respectively,
that the command line to execute the verifier is correctly assembled (including
source and property file as well as the options) from the parts specified in
the benchmark definition (b), and that the results of the verifier are correctly
interpreted and translated into the uniform SV-COMP result (True, False(p),
Unknown). The tool-info modules that were used for SV-COMP 2017 are
available in BenchExec 1.10.10

Reliable Assignment and Controlling of Computing Resources (e). We
use BenchExec11 [10] to satisfy the requirements for scientifically valid experi-
mentation, such as (i) accurate measurement and reliable enforcement of limits
for CPU time and memory, and (ii) reliable termination of processes (including
all child processes). For the first time in SV-COMP, we used BenchExec’s con-
tainer mode, in order to make sure that read and write operations are properly
controlled. For example, it was previously not automatically and reliably enforced
that tools do not increase the assigned memory by using a RAM disk. This and
some other issues that previously required manual inspection and analysis are
now systematically solved.

Violation Witnesses (f) and Correctness Witnesses (g). In SV-COMP,
each verification run (if applicable) is followed by a validation run that checks
whether the witness adheres to the exchange format and can be confirmed. The
8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
9 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

10 https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
11 https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
https://github.com/sosy-lab/benchexec

resource limits for the witness validators were 2 processing units (one physical
CPU core with hyper-threading), 7GB memory, and 10% of the verification time
(i.e., 1.5min) for violation witnesses and 100% (15min) for correctness witnesses.
The purpose of the tighter resource limits is to avoid delegating all verification
work to the validator. This witness-based validation process ensures a higher
quality of assignment of scores, compared to without witnesses: if a verifier claims
a found bug but is not able to provide a witness, then the verifier does not get
the full score. The witness format and the validation process is explained on the
witness-format web page 12. The version of the exchange format that was used
for SV-COMP 2017 has the tag ‘svcomp17’. More details on witness validation is
given in two related research articles [7, 8].

Verifier Archives (d). Due to legal issues we do not re-distribute the verifiers
on the competition web site, but list for each verifier a URL to an archive that
the participants promised to keep publicly available, together with the SHA1
hash of the archive that was used in SV-COMP. An overview table is provided
on the systems-description page of the competition web site 13. For replicating
experiments, the archive can be downloaded and verified against the given SHA1
hash. Each archive contains all parts that are needed to execute the verifier
(statically-linked executables and all components that are required in a certain
version, or for which no standard Ubuntu package is available). The archives are
also supposed to contain a license that permits use in SV-COMP, replicating the
SV-COMP experiments, that all data that the verifier produces as output are
property of the person that executes the verifier, and that the results obtained
from the verifier can be published without any restriction.

5 Results and Discussion

For the sixth time, the competition experiments represent the state of the art in
fully-automatic software-verification tools. The report shows the improvements
of the last year, in terms of effectiveness (number of verification tasks that can
be solved, correctness of the results, as accumulated in the score) and efficiency
(resource consumption in terms of CPU time). The results that are presented in
this article were inspected and approved by the participating teams.

Participating Verifiers. Table 3 provides an overview of the participating
competition candidates and Table 4 lists the features and technologies that are
used in the verification tools.

Computing Resources. The resource limits were the same as last year [6]:
Each verification run was limited to 8 processing units (cores), 15GB of memory,
and 15min of CPU time. The witness validation was limited to 2 processing
units, 7GB of memory, and 1.5min of CPU time for violation witnesses and
15min of CPU time for correctness witnesses. The machines for running the

12 https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
13 https://sv-comp.sosy-lab.org/2017/systems.php

https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
https://sv-comp.sosy-lab.org/2017/systems.php

Table 3: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation
2LS [34] Peter Schrammel U. of Sussex, UK
AProVE [19] Jera Hensel RWTH Aachen, Germany
Blast [35] Vadim Mutilin ISP RAS, Russia
CBMC [26] Michael Tautschnig Queen Mary, UK
Ceagle Guang Chen Tsinghua U., China
CIVL [37] Stephen Siegel U. of Delaware, USA
ConSequence Anand Yeolekar TCS, India
CPA-BAM-BnB [1] Pavel Andrianov ISP RAS, Russia
CPA-kInd [9] Matthias Dangl U. of Passau, Germany
CPA-Seq [14] Karlheinz Friedberger U. of Passau, Germany
DepthK [33] Herbert O. Rocha Federal U. of Roraima, Brazil
ESBMC [28] Lucas Cordeiro U. of Oxford, UK
ESBMC-falsi [28] Bernd Fischer Stellenbosch U., ZA
ESBMC-incr [28] Denis Nicole U. of Southampton, UK
ESBMC-kind [15] Mikhail Ramalho U. of Southampton, UK
Forester [21] Martin Hruska Brno U. of Technology, Czechia
HipTNT+ [27] Ton Chanh Le National U. of Singapore, Singapore
Lazy-CSeq [23] Omar Inverso Gran Sasso Science Institute, Italy
Lazy-CSeq-Abs [30] Bernd Fischer Stellenbosch U., ZA
Lazy-CSeq-Swarm Truc Nguyen Lam U. of Southampton, UK
MU-CSeq [36] Salvatore La Torre U. of Salerno, Italy
PredatorHP [25] Tomas Vojnar Brno U. of Technology, Czechia
Skink [11] Franck Cassez Macquarie U. at Sydney, Australia
SMACK [32] Zvonimir Rakamarić U. of Utah, USA
Symbiotic [12] Jan Strejček Masaryk U., Czechia
SymDIVINE [24] Jiří Barnat Masaryk U., Czechia
UAutomizer [18] Matthias Heizmann U. of Freiburg, Germany
UKojak [31] Daniel Dietsch U. of Freiburg, Germany
UL-CSeq [29] Gennaro Parlato U. of Southampton, UK
UTaipan [17] Marius Greitschus U. of Freiburg, Germany
VeriAbs [13] Priyanka Darke TCS, India
Yogar-CBMC Liangze Yin National U. of Defense Techn., China

experiments were different from last year, because we now had 168 machines
available and each verification run could be executed on a completely unloaded,
dedicated machine, in order to achieve precise measurements. Each machine had
one Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of
3.4GHz, 33GB of RAM, and a GNU/Linux operating system (x86_64-linux,
Ubuntu 16.04 with Linux kernel 4.4).

One complete verification execution of the competition consisted of 421 bench-
marks (each verifier on each selected category according to the opt-outs), sum-
ming up to 170 417 verification runs. Witness validation required 678 benchmarks
(combinations of verifier, category with witness validation, and two validators)
summing up to 232 916 validation runs. The consumed total CPU time for one
complete competition run for verification required a total of 490 days of CPU time.
Each tool was executed several times, in order to make sure no installation issues

Table 4: Technologies and features that the competition candidates offer

Participant C
E
G
A
R

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

S
ym

b
ol
ic

E
xe
cu

ti
on

B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

k-
In
d
u
ct
io
n

P
ro
p
er
ty
-D

ir
ec
te
d
R
ea
ch
.

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

N
u
m
er
ic
.
In
te
rv
al

A
n
al
ys
is

S
h
ap

e
A
n
al
ys
is

S
ep

ar
at
io
n
L
og

ic

B
it
-P

re
ci
se

A
n
al
ys
is

A
R
G
-B

as
ed

A
n
al
ys
is

L
az
y
A
b
st
ra
ct
io
n

In
te
rp
ol
at
io
n

A
u
to
m
at
a-
B
as
ed

A
n
al
ys
is

C
on

cu
rr
en

cy
S
u
p
p
or
t

R
an

ki
n
g
F
u
n
ct
io
n
s

2LS 3 3 3 3 3

AProVE 3 3 3 3 3

Blast 3 3 3 3 3 3

CBMC 3 3 3

Ceagle 3 3 3 3 3 3

CIVL 3 3 3 3

ConSequence 3 3 3

CPA-BAM-BnB 3 3 3 3 3 3 3

CPA-kInd 3 3 3 3 3 3 3 3

CPA-Seq 3 3 3 3 3 3 3 3 3 3 3 3 3

DepthK 3 3 3 3

ESBMC 3 3 3

ESBMC-falsi 3 3 3

ESBMC-incr 3 3 3

ESBMC-kind 3 3 3 3

Forester 3 3 3

HipTNT+ 3 3 3

Lazy-CSeq 3 3 3

Lazy-CSeq-Abs 3 3 3 3

Lazy-CSeq-Swarm 3 3 3

MU-CSeq 3 3 3

PredatorHP 3

Skink 3 3 3 3

SMACK 3 3 3 3 3 3

Symbiotic 3 3

SymDIVINE 3 3 3 3 3

UAutomizer 3 3 3 3 3 3 3

UKojak 3 3 3 3 3

UL-CSeq 3 3 3 3 3 3

UTaipan 3 3 3 3 3 3

VeriAbs 3 3 3

Yogar-CBMC 3 3 3 3 3

Table 5: Quantitative overview over all results; empty cells mark opt-outs

Participant

R
ea
ch
S
af
et
y

46
96

po
in
ts

28
97

ta
sk
s

M
em

S
af
et
y

54
1
po

in
ts

32
8
ta
sk
s

C
on

cu
rr
en

cy
S
af
et
y

12
93

po
in
ts

10
47

ta
sk
s

O
ve
rfl
ow

s
53
3
po

in
ts

32
8
ta
sk
s

T
er
m
in
at
io
n

25
13

po
in
ts

14
37

ta
sk
s

S
of
tw

ar
eS

ys
te
m
s

55
20

po
in
ts

28
71

ta
sk
s

F
al
si
fi
ca
ti
on

O
ve
ra
ll

29
08

po
in
ts

74
71

ta
sk
s

O
ve
ra
ll

14
55
3
po

in
ts

89
08

ta
sk
s

2LS 1038 -918 0 310 624 720 -4330 -1204
AProVE 1492
Blast 866
CBMC 2154 219 1135 230 37 2554 4766
Ceagle 2170 138 12 352 343 1972
CIVL 1251
ConSequence 794
CPA-BAM-BnB 975 -735
CPA-kInd 2156 0 0 101 0 778 232 1963
CPA-Seq 2862 88 1020 101 974 1011 1302 5296
DepthK 1552 27 548 85 -307 254 976 1894
ESBMC 1125 -85 601 105 0 301 184 1674
ESBMC-falsi 583 -65 552 106 0 -17 1269 1261
ESBMC-incr 1810 80 756 187 0 0 1482 3209
ESBMC-kind 1940 191 654 304 0 334 1610 4335
Forester

HipTNT+ 835
Lazy-CSeq 1226
Lazy-CSeq-Abs 1293
Lazy-CSeq-Swarm 1293
MU-CSeq 1179
PredatorHP 319
Skink -102
SMACK 3432 150 1208 417 0 1695 1154 6917
Symbiotic 2063 304 0 281 0 -7079 -2698 42
SymDIVINE 389
UAutomizer 2372 308 0 372 2184 1055 982 7099
UKojak 1564 268 0 356 0 410 900 3837
UL-CSeq 1177
UTaipan 1894 296 0 365 0 1067 918 4511
VeriAbs

Yogar-CBMC 1293

Table 6: Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Rank Participant Score CPU Solved False Wrong
Time Tasks Alarms Proofs

ReachSafety
1 SMACK 3432 100 1 543
2 CPA-Seq 2862 39 1 874 5
3 UAutomizer 2372 27 1 344

MemSafety
1 PredatorHP 319 .82 219
2 UAutomizer 308 1.9 145
3 Symbiotic 304 .080 233

ConcurrencySafety
1 Yogar-CBMC 1293 .35 1 047
2 Lazy-CSeq-Abs 1293 2.1 1 047
3 Lazy-CSeq-Swarm 1293 3.2 1 047

Overflows
1 SMACK 417 18 271 1
2 UAutomizer 372 .83 273
3 UTaipan 365 .85 270

Termination
1 UAutomizer 2184 8.3 1 272
2 AProVE 1492 3.6 520
3 CPA-Seq 974 14 821 4

SoftwareSystems
1 SMACK 1695 20 1 391 2
2 UTaipan 1067 18 1 567 7 4
3 UAutomizer 1055 19 1 568 7 4
FalsificationOverall
1 CBMC 2554 8.1 1 817
2 ESBMC-kind 1610 27 1 341 20
3 ESBMC-incr 1482 32 1 400 25

Overall
1 UAutomizer 7099 57 4 602 7 4
2 SMACK 6917 180 4 463 12 2
3 CPA-Seq 5296 81 5 393 29

Table 7: Necessary effort to compute results False versus True (measurement values
rounded to two significant digits)

Result True False

CPU Time CPU Energy CPU Time CPU Energy
(avg. in s) (avg. in J) (avg. in s) (avg. in J)

UAutomizer 46 450 42 420
SMACK 210 2 200 51 580
CPA-Seq 65 650 39 320

occur during the execution. We used BenchExec [10] to measure and control
computing resources (CPU time, memory, CPU energy) and VerifierCloud 14

to distribute, install, run, and clean-up verification runs, and to collect the results.
Quantitative Results. Table 5 presents the quantitative overview over all tools
and all categories (Forester participated only in subcategory ReachSafety-Heap,
MemSafety-Heap, and MemSafety-LinkedLists; VeriAbs participated only in some
subcategories of ReachSafety). The head row mentions the category, the maximal
score for the category, and the number of verification tasks. The tools are listed
in alphabetical order; every table row lists the scores of one verifier for each
category. We indicate the top-three candidates by formatting their scores in bold
face and in larger font size. An empty table cell means that the verifier opted-out
from the respective category. There was one category for which the winner was
decided based on the run time: in category ConcurrencySafety, all top-three
verifiers achieved the maximum score of 1293 points, but the run time differed.
More information (including interactive tables, quantile plots for every category,
and also the raw data in XML format) is available on the competition web-site. 15

Table 6 reports the top-three verifiers for each category. The run time (column
‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results: reporting an error path but
the property holds (incorrect False) and claiming that the program fulfills the
property although it actually contains a bug (incorrect True), respectively.
Discussion of Scoring Schema and Normalization. The verification com-
munity considers it more difficult to compute correctness proofs compared to
computing error paths: according to Table 2, an answer True yields 2 points
(confirmed witness) and 1 point (unconfirmed witness), while an answer False
yields 1 point (confirmed witness). This can have consequences on the final
ranking, as discussed in the report on the last SV-COMP edition [6].

Assigning a higher score value to results True (compared to results False)
seems justified by the CPU time and energy that the verifiers need to compute
the result. Table 7 shows actual numbers on this: the first column lists the three
best verifiers of category Overall, the second and third columns report the average
CPU time and average CPU energy for results True, and the forth and fifth
columns for results False. The average is taken over all verification tasks; the
CPU time is reported in seconds and the CPU energy in Joule (BenchExec
reads and accumulates the energy measurements of Intel CPUs). Especially for
the verifier SMACK, the effort to compute results True is significantly higher
compared to the effort to compute results False: 210 s versus 51 s of average
CPU time per verification task and 2 200 J versus 580 J of average CPU energy.

A similar consideration was made on the score normalization. The community
considers the value of each category equal, which has the consequence that
solving a verification task in a large category (many, often similar verification
tasks) has less value than solving a verification task in a small category (only a
few verification tasks) [3]. The values for category Overall in Table 6 illustrate

14 https://vcloud.sosy-lab.org/ 15 https://sv-comp.sosy-lab.org/2017/results/

https://vcloud.sosy-lab.org/
https://sv-comp.sosy-lab.org/2017/results/

 1

 10

 100

 1000

Ti
m

e
 i
n
 s

2LS
CBMC

Ceagle
CPA-kInd
CPA-Seq
DepthK

ESBMC-falsi
ESBMC-incr
ESBMC-kind

ESBMC
SMACK

Symbiotic
UAutomizer

UKojak
UTaipan

-2000 0 2000 4000 6000

Accumulated score

Fig. 4: Quantile functions for category Overall. Each quantile function illustrates the quantile
(x-coordinate) of the scores obtained by correct verification runs below a certain run time
(y-coordinate). More details were given previously [3]. A logarithmic scale is used for the time
range from 1 s to 1000 s, and a linear scale is used for the time range between 0 s and 1 s.

the purpose of the score normalization: CPA-Seq solved 5 393 tasks, which is
791 solved tasks more than the winner UAutomizer could solve (4 602). So
why did CPA-Seq not win the category? Because UAutomizer is better in the
intuitive sense of ‘overall’: it solved tasks more diversely, the ‘overall’ value of the
verification work is higher. Thus, UAutomizer received 7 099 points and CPA-Seq
received 5 296 points. Similarly, in category SoftwareSystems, UAutomizer solved
177 more tasks than SMACK; the tasks that UAutomizer solved were considered
of less value (i.e., from large categories). SMACK was able to solve considerably
more verification tasks in the seemingly difficult BusyBox categories. In these
cases, the score normalization correctly maps the community’s intuition.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web-site 15 includes such a
plot for each category; as example, we show the plot for category Overall (all
verification tasks) in Fig. 4. A total of 15 verifiers participated in category Overall,
for which the quantile plot shows the overall performance over all categories
(scores for meta categories are normalized [3]). A more detailed discussion of
score-based quantile plots, including examples of what interesting insights one
can obtain from the plots, is provided in previous competition reports [3, 6].

Correctness of Results. Out of those verifiers that participated in all categories,
UKojak is the only verifier that did not report any wrong result, CBMC did not
report any false alarm, and Ceagle, CPA-kInd, CPA-Seq, and ESBMC-falsi
did not report any wrong proof.

Table 8: Confirmation rate of witnesses
Result True False

Total Confirmed Unconfirmed Total Confirmed Unconfirmed
UAutomizer 3 558 3 481 77 1 173 1 121 52
SMACK 2 947 2 695 252 1 929 1 768 161
CPA-Seq 3 357 3 078 279 2 342 2 315 27

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
True or False: each answer must be accompanied by a verification witness. For
correctness witnesses, an unconfirmed answer True was still accepted, but was
assigned only 1 point instead of 2 (cf. Table 2). All verifiers in categories that
required witness validation support the common exchange format for violation
and correctness witnesses. We used the two independently developed witness
validators that are integrated in CPAchecker and UAutomizer [7, 8].

It is interesting to see that the majority of witnesses that the top-three verifiers
produced can be confirmed by the witness-validation process (more than 90%).
Table 8 shows the confirmed versus unconfirmed result: the first column lists the
three best verifiers of category Overall, the three columns for result True reports
the total, confirmed, and unconfirmed number of verification tasks for which the
verifier answered with True, respectively, and the three columns for result False
reports the total, confirmed, and unconfirmed number of verification tasks for
which the verifier answered with False, respectively. More information (for all
verifiers) is given in the detailed tables on the competition web-site 15, cf. also the
report on the demo category for correctness witnesses from SV-COMP 2016 [6].

6 Conclusion

SV-COMP 2017, the 6th edition of the Competition on Software Verification,
attracted 32 participating teams from 12 countries (number of teams 2012: 10,
2013: 11, 2014: 15, 2015: 22, 2016: 35). SV-COMP continues to be the broadest
overview of the state of the art in automatic software verification. For the first
time in verification history, proof hints (stored in an exchangeable witness) from
verifiers were used on a large scale to help a different tool (validator) to validate
whether it can, given the proof hints, reproduce a correctness proof. Given
the results (cf. Table 8), this approach is successful. The two points for the
results True were counted only if the correctness witness was confirmed; for
unconfirmed results True, only 1 point was assigned. The number of verification
tasks was increased from 6 661 to 8 908. The partitioning of the verification
tasks into categories was considerably restructured; the categories Overflows,
MemSafety, and Termination were extended and structured using sub-categories;
many verification tasks from the software system BusyBox were added to the
category SoftwareSystems. As before, the large jury and the organizer made sure
that the competition follows the high quality standards of the TACAS conference,
in particular with respect to the important principles of fairness, community
support, and transparency.

References

1. P. Andrianov, V. Mutilin, K. Friedberger, M. Mandrykin, and A. Volkov. CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In Proc. TACAS. Springer, 2017.

2. D. Beyer. Competition on software verification (SV-COMP). In Proc. TACAS,
LNCS 7214, pages 504–524. Springer, 2012.

3. D. Beyer. Second competition on software verification. In Proc. TACAS, LNCS 7795,
pages 594–609. Springer, 2013.

4. D. Beyer. Status report on software verification. In Proc. TACAS, LNCS 8413,
pages 373–388. Springer, 2014.

5. D. Beyer. Software verification and verifiable witnesses. In Proc. TACAS,
LNCS 9035, pages 401–416. Springer, 2015.

6. D. Beyer. Reliable and reproducible competition results with BenchExec and
witnesses. In Proc. TACAS, LNCS 9636, pages 887–904. Springer, 2016.

7. D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness witnesses: Ex-
changing verification results between verifiers. In Proc. FSE, pages 326–337. ACM,
2016.

8. D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
validation and stepwise testification across software verifiers. In Proc. FSE, pages
721–733. ACM, 2015.

9. D. Beyer, M. Dangl, and P. Wendler. Boosting k-induction with continuously-refined
invariants. In Proc. CAV, LNCS 9206, pages 622–640. Springer, 2015.

10. D. Beyer, S. Löwe, and P. Wendler. Benchmarking and resource measurement. In
Proc. SPIN, LNCS 9232, pages 160–178. Springer, 2015.

11. F. Cassez, T. Sloane, M. Roberts, M. Pigram, P. G. D. Aledo, and P. Suvanpong.
Skink 2.0: Static analysis of LLVM intermediate representation (competition
contribution). In Proc. TACAS. Springer, 2017.

12. M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. Symbiotic 4:
Beyond reachability (competition contribution). In Proc. TACAS. Springer, 2017.

13. B. Chimdyalwar, P. Darke, A. Chauhan, P. Shah, S. Kumar, and R. Venkatesh.
VeriAbs: Verification by abstraction (competition contribution). In Proc. TACAS.
Springer, 2017.

14. M. Dangl, S. Löwe, and P. Wendler. CPAchecker with support for recursive
programs and floating-point arithmetic. In Proc. TACAS. Springer, 2015.

15. M. Y. R. Gadelha, H. I. Ismail, and L. C. Cordeiro. Handling loops in bounded
model checking of C programs via k-induction. STTT, 19(1):97–114, 2017.

16. J. Giesl, F. Mesnard, A. Rubio, R. Thiemann, and J. Waldmann. Termination
competition (termCOMP 2015). In Proc. CADE, LNCS 9195, pages 105–108.
Springer, 2015.

17. M. Greitschus, D. Dietsch, M. Heizmann, A. Nutz, C. Schätzle, C. Schilling, F. Schüs-
sele, and A. Podelski. Ultimate Taipan: Trace abstraction and abstract interpre-
tation (competition contribution). In Proc. TACAS. Springer, 2017.

18. M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, B. Musa, A. Nutz, C. Schätzle,
C. Schilling, F. Schüssele, and A. Podelski. Ultimate Automizer with an on-
demand construction of Floyd-Hoare automata (competition contribution). In Proc.
TACAS. Springer, 2017.

http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-28756-5_38
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/s10009-015-0407-9
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-21401-6_6

19. J. Hensel, F. Emrich, F. Frohn, T. Stroeder, and J. Giesl. AProVE: Proving
and disproving termination of memory-manipulating C programs (competition
contribution). In Proc. TACAS. Springer, 2017.

20. F. Howar, M. Isberner, M. Merten, B. Steffen, and D. Beyer. The RERS grey-
box challenge 2012: Analysis of event-condition-action systems. In Proc. ISoLA,
LNCS 7609, pages 608–614. Springer, 2012.

21. M. Hruska, L. Holik, T. Vojnar, O. Lengal, A. Rogalewicz, and J. Simacek.
Forester: From heap shapes to automata predicates (competition contribution).
In Proc. TACAS. Springer, 2017.

22. M. Huisman, V. Klebanov, and R. Monahan. VerifyThis 2012 - A program verifica-
tion competition. STTT, 17(6):647–657, 2015.

23. O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq:
A context-bounded model checking tool for multi-threaded C programs. In Proc.
ASE, pages 807–812. IEEE, 2015.

24. M. Jonáš, J. Mrázek, V. Štill, J. Barnat, and H. Lauko. Optimizing and caching
SMT queries in SymDIVINE (competition contribution). In Proc. TACAS. 2017.

25. M. Kotoun, P. Peringer, V. Šoková, and T. Vojnar. Optimized PredatorHP and
the SV-COMP heap and memory-safety benchmark (competition contribution). In
Proc. TACAS, LNCS 9636, pages 942–945. Springer, 2016.

26. D. Kröning and M. Tautschnig. CBMC: C bounded model checker (competition
contribution). In Proc. TACAS, LNCS 8413, pages 389–391. Springer, 2014.

27. T. C. Le, Q.-T. Ta, and W.-N. Chin. HipTNT+: A termination and non-termination
analyzer by second-order abduction (competition contribution). In Proc. TACAS.
Springer, 2017.

28. J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer. ESBMC 1.22
(competition contribution). In Proc. TACAS, pages 405–407. Springer, 2014.

29. T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequentialization
for the safety verification of unbounded concurrent programs. In Proc. ATVA,
LNCS 9938, pages 174–191. Springer, 2016.

30. T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq 2.0:
Combining lazy sequentialization with abstract interpretation (competition contri-
bution). In Proc. TACAS. Springer, 2017.

31. A. Nutz, D. Dietsch, M. M. Mohamed, and A. Podelski. Ultimate Kojak with
memory-safety checks (competition contribution). In Proc. TACAS. Springer, 2015.

32. Z. Rakamarić and M. Emmi. SMACK: Decoupling source language details from
verifier implementations. In Proc. CAV, LNCS 8559, pages 106–113. Springer, 2014.

33. W. Rocha, H. O. Rocha, H. Ismail, L. Cordeiro, and B. Fischer. DepthK: A k-
induction verifier based on invariant inference for C programs (competition contri-
bution). In Proc. TACAS. Springer, 2017.

34. P. Schrammel and D. Kröning. 2LS for program analysis (competition contribution).
In Proc. TACAS, LNCS 9636, pages 905–907. Springer, 2016.

35. P. Shved, M. Mandrykin, and V. Mutilin. Predicate analysis with Blast 2.7
(competition contribution). In Proc. TACAS, pages 525–527. Springer, 2012.

36. E. Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato.
MU-CSeq 0.4: Individual memory location unwindings (competition contribution).
In Proc. TACAS, LNCS 9636, pages 938–941. Springer, 2016.

37. M. Zheng, J. G. Edenhofner, Z. Luo, M. J. Gerrard, M. B. Dwyer, and S. F. Siegel.
CIVL: Applying a general concurrency verification framework to C/Pthreads
programs (competition contribution). In Proc. TACAS. Springer, 2016.

http://dx.doi.org/10.1007/s10009-015-0396-8
http://dx.doi.org/10.1007/s10009-015-0396-8
http://dx.doi.org/10.1109/ASE.2015.108
http://dx.doi.org/10.1109/ASE.2015.108
http://dx.doi.org/10.1109/ASE.2015.108
http://dx.doi.org/10.1007/978-3-662-49674-9_66
http://dx.doi.org/10.1007/978-3-662-49674-9_66
http://dx.doi.org/10.1007/978-3-662-49674-9_66
http://dx.doi.org/10.1007/978-3-319-46520-3_12
http://dx.doi.org/10.1007/978-3-319-46520-3_12
http://dx.doi.org/10.1007/978-3-319-46520-3_12
http://dx.doi.org/10.1007/978-3-662-49674-9_56
http://dx.doi.org/10.1007/978-3-662-49674-9_56
http://dx.doi.org/10.1007/978-3-642-28756-5
http://dx.doi.org/10.1007/978-3-642-28756-5
http://dx.doi.org/10.1007/978-3-662-49674-9_65
http://dx.doi.org/10.1007/978-3-662-49674-9_65
http://dx.doi.org/10.1007/978-3-662-49674-9_65

