Publications of Nian-Ze Lee
Articles in conference or workshop proceedings
-
CPA-DF: A Tool for Configurable Interval Analysis to Boost Program Verification.
In Proc. ASE,
pages 2050-2053,
2023.
IEEE.
doi:10.1109/ASE56229.2023.00213
Keyword(s): Software Model Checking, Cooperative Verification, CPAchecker Funding: DFG-CONVEY
Publisher's Version
PDF
Video
Supplement
Artifact(s)
Abstract
Software verification is challenging, and auxiliary program invariants are used to improve the effectiveness of verification approaches. For instance, the k-induction implementation in CPAchecker, an award-winning framework for program analysis, uses invariants produced by a configurable data-flow analysis to strengthen induction hypotheses. This invariant generator, CPA-DF, uses arithmetic expressions over intervals as its abstract domain and is able to prove some safe verification tasks alone. After extensively evaluating CPA-DF on SV-Benchmarks, the largest publicly available suite of C safety-verification tasks, we discover that its potential as a stand-alone analysis or a sub-analysis in a parallel portfolio for combined verification approaches has been significantly underestimated: (1) As a stand-alone analysis, CPA-DF finds almost as many proofs as the plain k-induction implementation without auxiliary invariants. (2) As a sub-analysis running in parallel to the plain k-induction implementation, CPA-DF boosts the portfolio verifier to solve a comparable amount of tasks as the heavily-optimized k-induction implementation with invariant injection. Our detailed analysis reveals that dynamic precision adjustment is crucial to the efficiency and effectiveness of CPA-DF. To generalize our results beyond CPAchecker, we use CoVeriTeam, a platform for cooperative verification, to compose three portfolio verifiers that execute CPA-DF and three other software verifiers in parallel, respectively. Surprisingly, running CPA-DF merely in parallel to these state-of-the-art tools further boosts the number of correct results up to more than 20%.
Demonstration video: https://youtu.be/l7UG-vhTL_4BibTeX Entry
@inproceedings{ASE23a, author = {Dirk Beyer and Po-Chun Chien and Nian-Ze Lee}, title = {{CPA-DF}: {A} Tool for Configurable Interval Analysis to Boost Program Verification}, booktitle = {Proc.\ ASE}, pages = {2050-2053}, year = {2023}, series = {}, publisher = {IEEE}, doi = {10.1109/ASE56229.2023.00213}, url = {https://www.sosy-lab.org/research/cpa-df/}, pdf = {https://www.sosy-lab.org/research/pub/2023-ASE.CPA-DF_A_Tool_for_Configurable_Interval_Analysis_to_Boost_Program_Verification.pdf}, abstract = {Software verification is challenging, and auxiliary program invariants are used to improve the effectiveness of verification approaches. For instance, the <i>k</i>-induction implementation in <a href="https://cpachecker.sosy-lab.org/">CPAchecker</a>, an award-winning framework for program analysis, uses invariants produced by a configurable data-flow analysis to strengthen induction hypotheses. This invariant generator, CPA-DF, uses arithmetic expressions over intervals as its abstract domain and is able to prove some safe verification tasks alone. After extensively evaluating CPA-DF on <a href="https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks">SV-Benchmarks</a>, the largest publicly available suite of C safety-verification tasks, we discover that its potential as a stand-alone analysis or a sub-analysis in a parallel portfolio for combined verification approaches has been significantly underestimated: (1) As a stand-alone analysis, CPA-DF finds almost as many proofs as the plain <i>k</i>-induction implementation without auxiliary invariants. (2) As a sub-analysis running in parallel to the plain <i>k</i>-induction implementation, CPA-DF boosts the portfolio verifier to solve a comparable amount of tasks as the heavily-optimized <i>k</i>-induction implementation with invariant injection. Our detailed analysis reveals that dynamic precision adjustment is crucial to the efficiency and effectiveness of CPA-DF. To generalize our results beyond CPAchecker, we use <a href="https://gitlab.com/sosy-lab/software/coveriteam">CoVeriTeam</a>, a platform for cooperative verification, to compose three portfolio verifiers that execute CPA-DF and three other software verifiers in parallel, respectively. Surprisingly, running CPA-DF merely in parallel to these state-of-the-art tools further boosts the number of correct results up to more than 20%. <br> Demonstration video: <a href="https://youtu.be/l7UG-vhTL_4">https://youtu.be/l7UG-vhTL_4</a>}, keyword = {Software Model Checking, Cooperative Verification, CPAchecker}, artifact = {10.5281/zenodo.8245821}, funding = {DFG-CONVEY}, video = {https://youtu.be/l7UG-vhTL_4}, } -
Bridging Hardware and Software Analysis with Btor2C: A Word-Level-Circuit-to-C Translator.
In Proc. TACAS,
LNCS 13994,
pages 1-21,
2023.
Springer.
doi:10.1007/978-3-031-30820-8_12
Keyword(s): Software Model Checking, Cooperative Verification, Btor2 Funding: DFG-CONVEY
Publisher's Version
PDF
Presentation
Supplement
Artifact(s)
Abstract
Across the broad field for the analysis of computational systems, research endeavors are often categorized by the respective models under investigation. Algorithms and tools are usually developed for a specific model, hindering their applications to similar problems originating from other computational systems. A prominent example of such situation is the studies on formal verification and testing for hardware and software systems. The two research communities share common theoretical foundations and solving methods, including satisfiability, interpolation, and abstraction refinement. Nevertheless, it is often demanding for one community to benefit from the advancements of the other, as analyzers typically assume a particular input format. To bridge the gap between the hardware and software analysis, we propose Btor2C, a converter from word-level sequential circuits to C programs. We choose the Btor2 language as the input format for its simplicity and bit-precise semantics. It can be deemed as an intermediate representation tailored for analysis. Given a Btor2 circuit, Btor2C generates a behaviorally equivalent program in the C language, supported by most static program analyzers. We demonstrate the use cases of Btor2C by translating the benchmark set from the Hardware Model Checking Competitions into C programs and analyze them by tools from the Competitions on Software Verification and Testing. Our results show that software analyzers can complement hardware verifiers for enhanced quality assurance.BibTeX Entry
@inproceedings{TACAS23a, author = {Dirk Beyer and Po-Chun Chien and Nian-Ze Lee}, title = {Bridging Hardware and Software Analysis with {Btor2C}: {A} Word-Level-Circuit-to-{C} Translator}, booktitle = {Proc.\ TACAS}, pages = {1-21}, year = {2023}, series = {LNCS~13994}, publisher = {Springer}, doi = {10.1007/978-3-031-30820-8_12}, url = {https://www.sosy-lab.org/research/btor2c/}, presentation = {https://www.sosy-lab.org/research/prs/2023-04-26_TACAS23_Bridging_Hardware_and_Software_Analysis_with_Btor2C_Po-Chun.pdf}, abstract = {Across the broad field for the analysis of computational systems, research endeavors are often categorized by the respective models under investigation. Algorithms and tools are usually developed for a specific model, hindering their applications to similar problems originating from other computational systems. A prominent example of such situation is the studies on formal verification and testing for hardware and software systems. The two research communities share common theoretical foundations and solving methods, including satisfiability, interpolation, and abstraction refinement. Nevertheless, it is often demanding for one community to benefit from the advancements of the other, as analyzers typically assume a particular input format. To bridge the gap between the hardware and software analysis, we propose {Btor2C}, a converter from word-level sequential circuits to {C} programs. We choose <a href="https://doi.org/10.1007/978-3-319-96145-3_32">the {Btor2} language</a> as the input format for its simplicity and bit-precise semantics. It can be deemed as an intermediate representation tailored for analysis. Given a {Btor2} circuit, {Btor2C} generates a behaviorally equivalent program in the {C} language, supported by most static program analyzers. We demonstrate the use cases of {Btor2C} by translating the benchmark set from the Hardware Model Checking Competitions into {C} programs and analyze them by tools from the Competitions on Software Verification and Testing. Our results show that software analyzers can complement hardware verifiers for enhanced quality assurance.}, keyword = {Software Model Checking, Cooperative Verification, Btor2}, _pdf = {https://www.sosy-lab.org/research/pub/2023-TACAS.Bridging_Hardware_and_Software_Analysis_with_Btor2C_A_Word-Level-Circuit-to-C_Translator.pdf}, artifact = {10.5281/zenodo.7551707}, funding = {DFG-CONVEY}, }
Internal reports
-
Interpolation and SAT-Based Model Checking Revisited: Adoption to Software Verification.
Technical report 2208.05046, arXiv/CoRR,
August
2022.
doi:10.48550/arXiv.2208.05046
Keyword(s): Software Model Checking, CPAchecker
Publisher's Version
PDF
Presentation
Supplement
Abstract
Interpolation-based model checking (McMillan, 2003) is a formal-verification algorithm, which was originally devised to verify safety properties of finite-state transition systems. The algorithm is state-of-the-art in hardware model checking. It derives interpolants from unsatisfiable BMC queries, and collects them to construct an overapproximation of the set of reachable states. Unlike other formal-verification algorithms, such as k-induction or PDR, which have been extended to handle infinite-state systems and investigated for program analysis, McMillan's interpolation-based model checking algorithm from 2003 has not been used to verify programs so far. This paper closes this significant, 19 years old gap in knowledge by adopting the algorithm to software verification. We implemented it in the verification framework CPAchecker, and evaluated the implementation against other state-of-the-art software-verification techniques over the largest publicly available benchmark suite of C safety-verification tasks. The evaluation demonstrates that interpolation-based model checking is competitive among other algorithms in terms of both the number of solved verification tasks and the run-time efficiency. Our results might have important implications for software verification, because researchers and developers now have a richer set of approaches to choose from.BibTeX Entry
@techreport{TechReport22a, author = {Dirk Beyer and Nian-Ze Lee and Philipp Wendler}, title = {Interpolation and SAT-Based Model Checking Revisited: Adoption to Software Verification}, number = {2208.05046}, year = {2022}, doi = {10.48550/arXiv.2208.05046}, url = {https://www.sosy-lab.org/research/cpa-imc/}, presentation = {https://www.sosy-lab.org/research/prs/2022-08-11_iPRA22_Interpolation_and_SAT-Based_Model_Checking_Revisited.pdf}, abstract = {Interpolation-based model checking <a href="https://doi.org/10.1007/978-3-540-45069-6_1">(McMillan, 2003)</a> is a formal-verification algorithm, which was originally devised to verify safety properties of finite-state transition systems. The algorithm is state-of-the-art in hardware model checking. It derives interpolants from unsatisfiable BMC queries, and collects them to construct an overapproximation of the set of reachable states. Unlike other formal-verification algorithms, such as k-induction or PDR, which have been extended to handle infinite-state systems and investigated for program analysis, McMillan's <em>interpolation-based model checking</em> algorithm from 2003 has not been used to verify programs so far. This paper closes this significant, 19 years old gap in knowledge by adopting the algorithm to software verification. We implemented it in the verification framework CPAchecker, and evaluated the implementation against other state-of-the-art software-verification techniques over the largest publicly available benchmark suite of C safety-verification tasks. The evaluation demonstrates that interpolation-based model checking is competitive among other algorithms in terms of both the number of solved verification tasks and the run-time efficiency. Our results might have important implications for software verification, because researchers and developers now have a richer set of approaches to choose from.}, keyword = {Software Model Checking, CPAchecker}, _pdf = {https://www.sosy-lab.org/research/cpa-imc/Interpolation_and_SAT-Based_Model_Checking_Revisited.pdf}, institution = {arXiv/CoRR}, month = {August}, }
Disclaimer:
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.